soury commited on
Commit
a9e7259
·
1 Parent(s): dc007d4

optimization on preprocessing and other classif model

Browse files
models/audio_classification__knn.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a54b7efa8866a57c8b8f45ca1b6b5d04caf83d0e79fb42cfa77ca6e375e1e5d7
3
+ size 4811702
tasks/audio.py CHANGED
@@ -60,12 +60,12 @@ async def evaluate_audio(request: AudioEvaluationRequest):
60
  features = []
61
  for row in dataset:
62
  # Load the audio file and resample it
63
- target_sr = 25000
64
  audio = row['audio']['array']
65
  audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr)
66
 
67
  # Extract MFCC features
68
- mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=40)
69
  mfccs_scaled = np.mean(mfccs.T, axis=0)
70
 
71
  # Append features and labels
@@ -75,7 +75,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
75
 
76
  X_test = preprocess(test_dataset)
77
 
78
- classification_model = joblib.load("./models/audio_classification_baseline.pkl")
79
 
80
  predictions = classification_model.predict(X_test)
81
  true_labels = test_dataset["label"]
 
60
  features = []
61
  for row in dataset:
62
  # Load the audio file and resample it
63
+ target_sr = 6000
64
  audio = row['audio']['array']
65
  audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr)
66
 
67
  # Extract MFCC features
68
+ mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=7)
69
  mfccs_scaled = np.mean(mfccs.T, axis=0)
70
 
71
  # Append features and labels
 
75
 
76
  X_test = preprocess(test_dataset)
77
 
78
+ classification_model = joblib.load("./models/audio_classification_knn.pkl")
79
 
80
  predictions = classification_model.predict(X_test)
81
  true_labels = test_dataset["label"]