Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,21 @@ import gradio as gr
|
|
2 |
from gtts import gTTS
|
3 |
from io import BytesIO
|
4 |
import IPython.display as ipd
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
def
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
def
|
13 |
-
response =
|
14 |
-
tts = gTTS(text=response, lang='en')
|
15 |
-
fp = BytesIO()
|
16 |
-
tts.write_to_fp(fp)
|
17 |
-
fp.seek(0)
|
18 |
-
return ipd.Audio(fp.read(), autoplay=True)
|
19 |
-
|
20 |
-
def process_text_deepseek(input_text):
|
21 |
-
return deepseek_model.predict(input_text)
|
22 |
-
|
23 |
-
def process_speech_deepseek(audio):
|
24 |
-
response = deepseek_model.predict(audio)
|
25 |
tts = gTTS(text=response, lang='en')
|
26 |
fp = BytesIO()
|
27 |
tts.write_to_fp(fp)
|
@@ -29,14 +24,13 @@ def process_speech_deepseek(audio):
|
|
29 |
return ipd.Audio(fp.read(), autoplay=True)
|
30 |
|
31 |
def main(input_text):
|
32 |
-
|
33 |
-
return process_text_deepseek(input_text[0]), process_speech_deepseek(input_text[0])
|
34 |
-
else:
|
35 |
-
return process_text_codellama(input_text[0]), process_speech_codellama(input_text[0])
|
36 |
|
37 |
gr.Interface(
|
38 |
fn=main,
|
39 |
-
inputs=["text"
|
40 |
outputs=["text", "audio"],
|
|
|
|
|
41 |
live=True
|
42 |
-
).launch()
|
|
|
2 |
from gtts import gTTS
|
3 |
from io import BytesIO
|
4 |
import IPython.display as ipd
|
5 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
|
7 |
+
# Load your Hugging Face model and tokenizer
|
8 |
+
model_name = "soufyane/gemma_data_science"
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
def process_text_gemma(input_text):
|
13 |
+
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)["input_ids"]
|
14 |
+
output_ids = model.generate(input_ids)
|
15 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
16 |
+
return response
|
17 |
|
18 |
+
def process_speech_gemma(audio):
|
19 |
+
response = process_text_gemma(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
tts = gTTS(text=response, lang='en')
|
21 |
fp = BytesIO()
|
22 |
tts.write_to_fp(fp)
|
|
|
24 |
return ipd.Audio(fp.read(), autoplay=True)
|
25 |
|
26 |
def main(input_text):
|
27 |
+
return process_text_gemma(input_text[0]), process_speech_gemma(input_text[0])
|
|
|
|
|
|
|
28 |
|
29 |
gr.Interface(
|
30 |
fn=main,
|
31 |
+
inputs=["text"],
|
32 |
outputs=["text", "audio"],
|
33 |
+
title="Gemma Data Science Model",
|
34 |
+
description="This is a text-to-text model for data science tasks.",
|
35 |
live=True
|
36 |
+
).launch()
|