Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -48,14 +48,9 @@ def infer_full_vol(tensor, model):
|
|
48 |
|
49 |
def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_width=32, stride_depth=16, batch_size=10, num_worker=2):
|
50 |
test_subject = tio.Subject(img = tio.ScalarImage(tensor=tensor.unsqueeze(0))) # adding channel dim while creating the TorchIO subject
|
51 |
-
|
52 |
overlap = np.subtract(patch_size, (stride_length, stride_width, stride_depth))
|
53 |
|
54 |
def normaliser(batch):
|
55 |
-
"""
|
56 |
-
Purpose: Normalise pixel intensities of each patch using the max values in the 3D patch
|
57 |
-
:param batch: 5D array (batch_size x channel x width x depth x height)
|
58 |
-
"""
|
59 |
for i in range(batch.shape[0]):
|
60 |
batch[i] = batch[i] / batch[i].max()
|
61 |
return batch
|
@@ -74,7 +69,6 @@ def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_wid
|
|
74 |
st.text(f"Processing batch {i + 1} of {total_batches}...")
|
75 |
|
76 |
local_batch = normaliser(patches_batch['img'][tio.DATA].float())
|
77 |
-
local_batch = local_batch / local_batch.max()
|
78 |
locations = patches_batch[tio.LOCATION]
|
79 |
|
80 |
local_batch = torch.movedim(local_batch, -1, -3)
|
|
|
48 |
|
49 |
def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_width=32, stride_depth=16, batch_size=10, num_worker=2):
|
50 |
test_subject = tio.Subject(img = tio.ScalarImage(tensor=tensor.unsqueeze(0))) # adding channel dim while creating the TorchIO subject
|
|
|
51 |
overlap = np.subtract(patch_size, (stride_length, stride_width, stride_depth))
|
52 |
|
53 |
def normaliser(batch):
|
|
|
|
|
|
|
|
|
54 |
for i in range(batch.shape[0]):
|
55 |
batch[i] = batch[i] / batch[i].max()
|
56 |
return batch
|
|
|
69 |
st.text(f"Processing batch {i + 1} of {total_batches}...")
|
70 |
|
71 |
local_batch = normaliser(patches_batch['img'][tio.DATA].float())
|
|
|
72 |
locations = patches_batch[tio.LOCATION]
|
73 |
|
74 |
local_batch = torch.movedim(local_batch, -1, -3)
|