Spaces:
Runtime error
Runtime error
trial version ready
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import tempfile
|
|
10 |
from pathlib import Path
|
11 |
from skimage.filters import threshold_otsu
|
12 |
import torchio as tio
|
13 |
-
import psutil
|
14 |
|
15 |
def infer_full_vol(tensor, model):
|
16 |
tensor = tensor.unsqueeze(0).unsqueeze(0) # Shape: [1, 1, D, H, W] - adding batch and channel dims
|
@@ -61,7 +61,7 @@ def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_wid
|
|
61 |
total_batches = len(patch_loader)
|
62 |
progress_bar = st.progress(0)
|
63 |
for i, patches_batch in enumerate(patch_loader):
|
64 |
-
st.text(f"Processing batch {i + 1} of {total_batches}...
|
65 |
|
66 |
local_batch = patches_batch['img'][tio.DATA].float()
|
67 |
local_batch = local_batch / local_batch.max()
|
@@ -78,7 +78,7 @@ def infer_patch_based(tensor, model, patch_size=64, stride_length=32, stride_wid
|
|
78 |
aggregator.add_batch(output, locations)
|
79 |
|
80 |
progress_bar.progress((i + 1) / total_batches)
|
81 |
-
st.text(f"CPU usage: {psutil.cpu_percent()}% | RAM usage: {psutil.virtual_memory().percent}%")
|
82 |
|
83 |
predicted = aggregator.get_output_tensor().squeeze().numpy()
|
84 |
|
@@ -130,11 +130,11 @@ if selected_mode == "Patch-based inference [Default for DS6]":
|
|
130 |
patch_size = st.number_input("Patch size:", min_value=1, value=64)
|
131 |
stride_length = st.number_input("Stride length:", min_value=1, value=32)
|
132 |
with col2:
|
|
|
133 |
stride_width = st.number_input("Stride width:", min_value=1, value=32)
|
134 |
-
stride_depth = st.number_input("Stride depth:", min_value=1, value=16)
|
135 |
with col3:
|
136 |
-
batch_size = st.number_input("Batch size:", min_value=1, value=14)
|
137 |
num_worker = st.number_input("Number of workers:", min_value=1, value=3)
|
|
|
138 |
|
139 |
# Process button
|
140 |
process_button = st.button("Process")
|
|
|
10 |
from pathlib import Path
|
11 |
from skimage.filters import threshold_otsu
|
12 |
import torchio as tio
|
13 |
+
# import psutil
|
14 |
|
15 |
def infer_full_vol(tensor, model):
|
16 |
tensor = tensor.unsqueeze(0).unsqueeze(0) # Shape: [1, 1, D, H, W] - adding batch and channel dims
|
|
|
61 |
total_batches = len(patch_loader)
|
62 |
progress_bar = st.progress(0)
|
63 |
for i, patches_batch in enumerate(patch_loader):
|
64 |
+
st.text(f"Processing batch {i + 1} of {total_batches}...")
|
65 |
|
66 |
local_batch = patches_batch['img'][tio.DATA].float()
|
67 |
local_batch = local_batch / local_batch.max()
|
|
|
78 |
aggregator.add_batch(output, locations)
|
79 |
|
80 |
progress_bar.progress((i + 1) / total_batches)
|
81 |
+
# st.text(f"CPU usage: {psutil.cpu_percent()}% | RAM usage: {psutil.virtual_memory().percent}%")
|
82 |
|
83 |
predicted = aggregator.get_output_tensor().squeeze().numpy()
|
84 |
|
|
|
130 |
patch_size = st.number_input("Patch size:", min_value=1, value=64)
|
131 |
stride_length = st.number_input("Stride length:", min_value=1, value=32)
|
132 |
with col2:
|
133 |
+
batch_size = st.number_input("Batch size:", min_value=1, value=14)
|
134 |
stride_width = st.number_input("Stride width:", min_value=1, value=32)
|
|
|
135 |
with col3:
|
|
|
136 |
num_worker = st.number_input("Number of workers:", min_value=1, value=3)
|
137 |
+
stride_depth = st.number_input("Stride depth:", min_value=1, value=16)
|
138 |
|
139 |
# Process button
|
140 |
process_button = st.button("Process")
|