File size: 9,923 Bytes
a76b5d6
068b166
 
 
 
 
 
 
 
 
 
 
 
a76b5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import streamlit as st
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Set random seed for reproducibility
np.random.seed(42)
torch.manual_seed(42)

def run_female_superhero_train():
    # Number of samples per superhero
    N_per_class = 200

    # List of female superheroes
    superheroes = ['Wonder Woman', 'Captain Marvel', 'Vedova Nera', 'Tempesta', 'Supergirl']

    # Total number of classes
    num_classes = len(superheroes)

    # Total number of samples
    N = N_per_class * num_classes

    # Number of original features
    D = 5  # Strength, Speed, Intelligence, Durability, Energy Projection

    # Update the total number of features after adding the interaction term
    total_features = D + 1  # Original features plus the interaction term

    # Initialize feature matrix X and label vector y
    X = np.zeros((N, total_features))
    y = np.zeros(N, dtype=int)

    # Define the mean and standard deviation for each feature per superhero
    # Features: [Strength, Speed, Intelligence, Durability, Energy Projection]
    superhero_stats = {
        'Wonder Woman': {
            'mean': [9, 9, 8, 9, 8],
            'std':  [0.5, 0.5, 0.5, 0.5, 0.5]
        },
        'Captain Marvel': {
            'mean': [10, 9, 7, 10, 10],
            'std':  [0.5, 0.5, 0.5, 0.5, 0.5]
        },
        'Vedova Nera': {
            'mean': [5, 7, 8, 6, 2],
            'std':  [0.5, 0.5, 0.5, 0.5, 0.5]
        },
        'Tempesta': {
            'mean': [6, 7, 8, 6, 9],
            'std':  [0.5, 0.5, 0.5, 0.5, 0.5]
        },
        'Supergirl': {
            'mean': [10, 10, 8, 10, 9],
            'std':  [0.5, 0.5, 0.5, 0.5, 0.5]
        },
    }

    # Generate synthetic data for each superhero with non-linear relationships
    for idx, hero in enumerate(superheroes):
        start = idx * N_per_class
        end = (idx + 1) * N_per_class
        means = superhero_stats[hero]['mean']
        stds = superhero_stats[hero]['std']
        X_hero = np.random.normal(means, stds, (N_per_class, D))
        # Ensure feature values are within reasonable ranges before computing interaction
        X_hero = np.clip(X_hero, 1, 10)
        # Introduce non-linear feature interactions
        interaction_term = np.sin(X_hero[:, 1]) * np.log(X_hero[:, 4])  # Interaction between Speed and Energy Projection
        X_hero = np.hstack((X_hero, interaction_term.reshape(-1, 1)))
        X[start:end] = X_hero
        y[start:end] = idx

    # Ensure all feature values are within reasonable ranges
    X[:, :D] = np.clip(X[:, :D], 1, 10)

    # Shuffle the dataset
    X, y = shuffle(X, y, random_state=42)

    # Normalize the features
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    # Split data into training and test sets
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42)

    # Convert data to torch tensors
    X_train_tensor = torch.from_numpy(X_train).float()
    y_train_tensor = torch.from_numpy(y_train).long()
    X_test_tensor = torch.from_numpy(X_test).float()
    y_test_tensor = torch.from_numpy(y_test).long()

    # Random prediction function
    def random_prediction(X):
        num_samples = X.shape[0]
        random_preds = np.random.randint(num_classes, size=num_samples)
        return random_preds

    # Random prediction and evaluation
    random_preds = random_prediction(X_test)
    random_accuracy = (random_preds == y_test).sum() / y_test.size

    # Define Linear Model
    class LinearModel(nn.Module):
        def __init__(self, input_dim, output_dim):
            super(LinearModel, self).__init__()
            self.linear = nn.Linear(input_dim, output_dim)

        def forward(self, x):
            return self.linear(x)

    # Initialize Linear Model
    input_dim = total_features
    output_dim = num_classes
    linear_model = LinearModel(input_dim, output_dim)

    # Loss and optimizer for Linear Model
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(linear_model.parameters(), lr=0.01, weight_decay=1e-4)

    # Training the Linear Model
    num_epochs = 1#00
    for epoch in range(num_epochs):
        linear_model.train()
        outputs = linear_model(X_train_tensor)
        loss = criterion(outputs, y_train_tensor)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (epoch + 1) % 25 == 0:
            st.write('Modello Lineare - Epoch [{}/{}], Loss: {:.4f}'.format(
                epoch + 1, num_epochs, loss.item()))

    # Evaluate Linear Model
    linear_model.eval()
    with torch.no_grad():
        outputs = linear_model(X_test_tensor)
        _, predicted = torch.max(outputs.data, 1)
        linear_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0)

    # Define Neural Network Model with regularization
    class NeuralNet(nn.Module):
        def __init__(self, input_dim, hidden_dims, output_dim):
            super(NeuralNet, self).__init__()
            layers = []
            in_dim = input_dim
            for h_dim in hidden_dims:
                layers.append(nn.Linear(in_dim, h_dim))
                layers.append(nn.ReLU())
                layers.append(nn.BatchNorm1d(h_dim))
                layers.append(nn.Dropout(0.3))
                in_dim = h_dim
            layers.append(nn.Linear(in_dim, output_dim))
            self.model = nn.Sequential(*layers)

        def forward(self, x):
            return self.model(x)

    # Initialize Neural Network Model
    hidden_dims = [128, 64, 32]
    neural_model = NeuralNet(input_dim, hidden_dims, output_dim)

    # Loss and optimizer for Neural Network Model
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4)

    # Training the Neural Network Model
    num_epochs = 200
    for epoch in range(num_epochs):
        neural_model.train()
        outputs = neural_model(X_train_tensor)
        loss = criterion(outputs, y_train_tensor)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (epoch + 1) % 20 == 0:
            st.write('Rete Neurale - Epoch [{}/{}], Loss: {:.4f}'.format(
                epoch + 1, num_epochs, loss.item()))

    # Evaluate Neural Network Model
    neural_model.eval()
    with torch.no_grad():
        outputs = neural_model(X_test_tensor)
        _, predicted = torch.max(outputs.data, 1)
        neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0)

    # Summary of Accuracies
    st.write("\nRiepilogo delle Accuratezze:....")
    st.error('Accuratezza Previsione Casuale: {:.2f}%'.format(100 * random_accuracy))
    st.warning('Accuratezza Modello Lineare: {:.2f}%'.format(100 * linear_accuracy))
    st.success('Accuratezza Rete Neurale: {:.2f}%'.format(100 * neural_accuracy))
    
    return linear_model, neural_model, scaler, superheroes, num_classes

def get_user_input_and_predict_female_superhero(linear_model, neural_model, scaler, superheroes, num_classes):
    st.write("Adjust the sliders for the following superhero attributes on a scale from 1 to 10:")

    # Feature names corresponding to superhero attributes
    feature_names = ['Forza', 'Velocità', 'Intelligenza', 'Resistenza', 'Proiezione di Energia']
    
    # Initialize or retrieve user input from session state to preserve the values across reruns
    if 'user_features' not in st.session_state:
        st.session_state.user_features = [5] * len(feature_names)  # Default slider values set to 5

    # Create a form to group sliders and button
    with st.form(key='superhero_form'):
        for i, feature in enumerate(feature_names):
            st.session_state.user_features[i] = st.slider(
                feature, 1, 10, st.session_state.user_features[i], key=f'slider_{i}'
            )
        
        # Form submission button
        submit_button = st.form_submit_button(label='Calcola Previsioni')

    # Proceed with prediction if the form is submitted
    if submit_button:
        # Copy user input values (superhero attributes)
        user_features = st.session_state.user_features.copy()

        # Calculate interaction term (interaction between Speed and Energy Projection)
        interaction_term = np.sin(user_features[1]) * np.log(user_features[4])
        
        # Append the interaction term to the original features
        user_features.append(interaction_term)
        
        # Convert to numpy array and reshape to match the expected input shape
        user_features = np.array(user_features).reshape(1, -1)
        
        # Normalize user inputs using the scaler that was fit during training
        user_features_scaled = scaler.transform(user_features)
        
        # Convert the scaled input into a torch tensor
        user_tensor = torch.from_numpy(user_features_scaled).float()

        # Make a random prediction for comparison
        random_pred = np.random.randint(num_classes)
        st.error(f"Previsione Casuale: {superheroes[random_pred]}")

        # **Linear Model Prediction**
        linear_model.eval()  # Set model to evaluation mode
        with torch.no_grad():
            outputs = linear_model(user_tensor)
            _, predicted = torch.max(outputs.data, 1)
            linear_pred = predicted.item()
        st.warning(f"Previsione Modello Lineare: {superheroes[linear_pred]}")

        # **Neural Network Prediction**
        neural_model.eval()  # Set model to evaluation mode
        with torch.no_grad():
            outputs = neural_model(user_tensor)
            _, predicted = torch.max(outputs.data, 1)
            neural_pred = predicted.item()
        st.success(f"Previsione Rete Neurale: {superheroes[neural_pred]}")