soumickmj's picture
v0 trial
068b166
raw
history blame
1.94 kB
import streamlit as st
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.utils import shuffle
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from NdR_disease import run_disease_train, get_user_input_and_predict
# Function for male superhero task
def run_male_superhero_task():
st.write("Training Male Superhero model...")
# Male superhero training logic goes here
# Add dummy print statements as a placeholder
st.write("Male superhero model - Step 1: Data prepared.")
st.write("Male superhero model - Step 2: Model trained.")
st.write("Male superhero model - Step 3: Results evaluated.")
# Function for female superhero task
def run_female_superhero_task():
st.write("Training Female Superhero model...")
# Female superhero training logic goes here
# Add dummy print statements as a placeholder
st.write("Female superhero model - Step 1: Data prepared.")
st.write("Female superhero model - Step 2: Model trained.")
st.write("Female superhero model - Step 3: Results evaluated.")
# Streamlit UI
st.title("AI Training Demo")
# Task selection buttons
task = st.selectbox("Choose a task:", ("Superhero", "Disease"))
if task == "Superhero":
# Sub-options for Male and Female Superhero
gender = st.selectbox("Choose the gender:", ("Male", "Female"))
if gender == "Male":
if st.button("Run Male Superhero Task"):
run_male_superhero_task()
elif gender == "Female":
if st.button("Run Female Superhero Task"):
run_female_superhero_task()
elif task == "Disease":
if st.button("Run Disease Task"):
linear_model, neural_model, scaler, conditions, num_classes = run_disease_train()
get_user_input_and_predict(linear_model, neural_model, scaler, conditions, num_classes)