|
import streamlit as st |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from sklearn.utils import shuffle |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
np.random.seed(42) |
|
torch.manual_seed(42) |
|
|
|
def run_disease_train(): |
|
|
|
N_per_class = 500 |
|
|
|
|
|
conditions = ['Common Cold', 'Seasonal Allergies', 'Migraine', 'Gastroenteritis', 'Tension Headache'] |
|
|
|
|
|
num_classes = len(conditions) |
|
|
|
|
|
N = N_per_class * num_classes |
|
|
|
|
|
D = 10 |
|
|
|
|
|
total_features = D + 2 |
|
|
|
|
|
X = np.zeros((N, total_features)) |
|
y = np.zeros(N, dtype=int) |
|
|
|
|
|
|
|
condition_stats = { |
|
'Common Cold': { |
|
'mean': [1, 6, 7, 8, 1, 1, 1, 5, 5, 5], |
|
'std': [1.5, 2, 2, 2, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
'Seasonal Allergies': { |
|
'mean': [0, 3, 8, 9, 1, 1, 1, 4, 4, 6], |
|
'std': [1.5, 2, 2, 2, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
'Migraine': { |
|
'mean': [0, 1, 1, 1, 2, 2, 2, 8, 7, 8], |
|
'std': [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
'Gastroenteritis': { |
|
'mean': [2, 2, 1, 1, 7, 6, 8, 5, 6, 5], |
|
'std': [1.5, 2, 1.5, 1.5, 2, 2, 2, 2, 2, 2] |
|
}, |
|
'Tension Headache': { |
|
'mean': [0, 1, 1, 1, 1, 1, 1, 6, 5, 8], |
|
'std': [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
} |
|
|
|
|
|
for idx, condition in enumerate(conditions): |
|
start = idx * N_per_class |
|
end = (idx + 1) * N_per_class |
|
means = condition_stats[condition]['mean'] |
|
stds = condition_stats[condition]['std'] |
|
X_condition = np.random.normal(means, stds, (N_per_class, D)) |
|
|
|
X_condition = np.clip(X_condition, 0, 10) |
|
|
|
interaction_term = np.sin(X_condition[:, 7]) * np.log1p(X_condition[:, 9]) |
|
interaction_term2 = X_condition[:, 0] * X_condition[:, 4] |
|
X_condition = np.hstack((X_condition, interaction_term.reshape(-1, 1), interaction_term2.reshape(-1, 1))) |
|
X[start:end] = X_condition |
|
y[start:end] = idx |
|
|
|
|
|
X, y = shuffle(X, y, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_scaled = scaler.fit_transform(X) |
|
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split( |
|
X_scaled, y, test_size=0.2, random_state=42 |
|
) |
|
|
|
|
|
X_train_tensor = torch.from_numpy(X_train).float() |
|
y_train_tensor = torch.from_numpy(y_train).long() |
|
X_test_tensor = torch.from_numpy(X_test).float() |
|
y_test_tensor = torch.from_numpy(y_test).long() |
|
|
|
|
|
def random_prediction(num_samples): |
|
random_preds = np.random.randint(num_classes, size=num_samples) |
|
return random_preds |
|
|
|
|
|
random_preds = random_prediction(len(y_test)) |
|
random_accuracy = (random_preds == y_test).sum() / y_test.size |
|
|
|
|
|
class LinearModel(nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super(LinearModel, self).__init__() |
|
self.linear = nn.Linear(input_dim, output_dim) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
|
|
input_dim = total_features |
|
output_dim = num_classes |
|
linear_model = LinearModel(input_dim, output_dim) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.SGD(linear_model.parameters(), lr=0.01, weight_decay=1e-4) |
|
|
|
|
|
num_epochs = 50 |
|
for epoch in range(num_epochs): |
|
linear_model.train() |
|
outputs = linear_model(X_train_tensor) |
|
loss = criterion(outputs, y_train_tensor) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
if (epoch + 1) % 10 == 0: |
|
st.write('Linear Model - Epoch [{}/{}], Loss: {:.4f}'.format( |
|
epoch + 1, num_epochs, loss.item())) |
|
|
|
|
|
linear_model.eval() |
|
with torch.no_grad(): |
|
outputs = linear_model(X_test_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
linear_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0) |
|
|
|
|
|
class NeuralNet(nn.Module): |
|
def __init__(self, input_dim, hidden_dims, output_dim): |
|
super(NeuralNet, self).__init__() |
|
layers = [] |
|
in_dim = input_dim |
|
for h_dim in hidden_dims: |
|
layers.append(nn.Linear(in_dim, h_dim)) |
|
layers.append(nn.ReLU()) |
|
layers.append(nn.BatchNorm1d(h_dim)) |
|
layers.append(nn.Dropout(0.5)) |
|
in_dim = h_dim |
|
layers.append(nn.Linear(in_dim, output_dim)) |
|
self.model = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
hidden_dims = [256, 128, 64] |
|
neural_model = NeuralNet(input_dim, hidden_dims, output_dim) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4) |
|
|
|
|
|
num_epochs = 300 |
|
for epoch in range(num_epochs): |
|
neural_model.train() |
|
outputs = neural_model(X_train_tensor) |
|
loss = criterion(outputs, y_train_tensor) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
if (epoch + 1) % 30 == 0: |
|
st.write('Neural Network - Epoch [{}/{}], Loss: {:.4f}'.format( |
|
epoch + 1, num_epochs, loss.item())) |
|
|
|
|
|
neural_model.eval() |
|
with torch.no_grad(): |
|
outputs = neural_model(X_test_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0) |
|
|
|
|
|
st.write("\nSummary of Accuracies:....") |
|
st.write(f'Random Prediction Accuracy: {random_accuracy * 100:.2f}%') |
|
st.write(f'Linear Model Accuracy: {linear_accuracy * 100:.2f}%') |
|
st.write(f'Neural Network Model Accuracy: {neural_accuracy * 100:.2f}%') |
|
|
|
return linear_model, neural_model, scaler, conditions, num_classes |
|
|
|
|
|
import streamlit as st |
|
import numpy as np |
|
import torch |
|
|
|
def get_user_input_and_predict(linear_model, neural_model, scaler, conditions, num_classes): |
|
st.write("\nAdjust the sliders for the following symptoms on a scale from 0 (none) to 10 (severe):") |
|
|
|
|
|
feature_names = ['Fever', 'Cough', 'Sneezing', 'Runny Nose', 'Nausea', 'Vomiting', |
|
'Diarrhea', 'Headache', 'Fatigue', 'Stress Level'] |
|
|
|
|
|
user_features = [] |
|
for feature in feature_names: |
|
value = st.slider(feature, 0, 10, 5) |
|
user_features.append(value) |
|
|
|
|
|
interaction_term = np.sin(user_features[7]) * np.log1p(user_features[9]) |
|
interaction_term2 = user_features[0] * user_features[4] |
|
user_features.extend([interaction_term, interaction_term2]) |
|
|
|
|
|
if st.button('Calculate Predictions'): |
|
|
|
user_features = scaler.transform([user_features]) |
|
user_tensor = torch.from_numpy(user_features).float() |
|
|
|
|
|
random_pred = np.random.randint(num_classes) |
|
st.write(f"\nRandom Prediction: {conditions[random_pred]}") |
|
|
|
|
|
linear_model.eval() |
|
with torch.no_grad(): |
|
outputs = linear_model(user_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
linear_pred = predicted.item() |
|
st.write(f"Linear Model Prediction: {conditions[linear_pred]}") |
|
|
|
|
|
neural_model.eval() |
|
with torch.no_grad(): |
|
outputs = neural_model(user_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
neural_pred = predicted.item() |
|
st.write(f"Neural Network Prediction: {conditions[neural_pred]}") |