|
import streamlit as st |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from sklearn.utils import shuffle |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
|
|
|
|
np.random.seed(42) |
|
torch.manual_seed(42) |
|
|
|
def run_male_superhero_train(): |
|
|
|
N_per_class = 200 |
|
|
|
|
|
superheroes = ['Iron Man', 'Hulk', 'Flash', 'Batman', 'Thor'] |
|
|
|
|
|
num_classes = len(superheroes) |
|
|
|
|
|
N = N_per_class * num_classes |
|
|
|
|
|
D = 5 |
|
|
|
|
|
total_features = D + 1 |
|
|
|
|
|
X = np.zeros((N, total_features)) |
|
y = np.zeros(N, dtype=int) |
|
|
|
|
|
|
|
superhero_stats = { |
|
'Iron Man': { |
|
'mean': [7, 7, 9, 8, 8], |
|
'std': [0.5, 0.5, 0.2, 0.5, 0.5] |
|
}, |
|
'Hulk': { |
|
'mean': [10, 5, 3, 10, 2], |
|
'std': [0.5, 0.5, 0.2, 0.5, 0.5] |
|
}, |
|
'Flash': { |
|
'mean': [4, 10, 6, 5, 3], |
|
'std': [0.5, 0.5, 0.2, 0.5, 0.5] |
|
}, |
|
'Batman': { |
|
'mean': [5, 6, 9, 6, 2], |
|
'std': [0.5, 0.5, 0.2, 0.5, 0.5] |
|
}, |
|
'Thor': { |
|
'mean': [10, 8, 7, 10, 9], |
|
'std': [0.5, 0.5, 0.2, 0.5, 0.5] |
|
}, |
|
} |
|
|
|
|
|
for idx, hero in enumerate(superheroes): |
|
start = idx * N_per_class |
|
end = (idx + 1) * N_per_class |
|
means = superhero_stats[hero]['mean'] |
|
stds = superhero_stats[hero]['std'] |
|
X_hero = np.random.normal(means, stds, (N_per_class, D)) |
|
|
|
X_hero = np.clip(X_hero, 1, 10) |
|
|
|
interaction_term = np.sin(X_hero[:, 0]) * np.log(X_hero[:, 2]) |
|
X_hero = np.hstack((X_hero, interaction_term.reshape(-1, 1))) |
|
X[start:end] = X_hero |
|
y[start:end] = idx |
|
|
|
|
|
X[:, :D] = np.clip(X[:, :D], 1, 10) |
|
|
|
|
|
X, y = shuffle(X, y, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X = scaler.fit_transform(X) |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split( |
|
X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
X_train_tensor = torch.from_numpy(X_train).float() |
|
y_train_tensor = torch.from_numpy(y_train).long() |
|
X_test_tensor = torch.from_numpy(X_test).float() |
|
y_test_tensor = torch.from_numpy(y_test).long() |
|
|
|
|
|
def random_prediction(X): |
|
num_samples = X.shape[0] |
|
random_preds = np.random.randint(num_classes, size=num_samples) |
|
return random_preds |
|
|
|
|
|
random_preds = random_prediction(X_test) |
|
random_accuracy = (random_preds == y_test).sum() / y_test.size |
|
|
|
|
|
class LinearModel(nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super(LinearModel, self).__init__() |
|
self.linear = nn.Linear(input_dim, output_dim) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
|
|
input_dim = total_features |
|
output_dim = num_classes |
|
linear_model = LinearModel(input_dim, output_dim) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.SGD(linear_model.parameters(), lr=0.01, weight_decay=1e-4) |
|
|
|
|
|
num_epochs = 100 |
|
for epoch in range(num_epochs): |
|
linear_model.train() |
|
outputs = linear_model(X_train_tensor) |
|
loss = criterion(outputs, y_train_tensor) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
if (epoch + 1) % 25 == 0: |
|
st.write('Modello Lineare - Epoch [{}/{}], Loss: {:.4f}'.format( |
|
epoch + 1, num_epochs, loss.item())) |
|
|
|
|
|
linear_model.eval() |
|
with torch.no_grad(): |
|
outputs = linear_model(X_test_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
linear_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0) |
|
|
|
|
|
class NeuralNet(nn.Module): |
|
def __init__(self, input_dim, hidden_dims, output_dim): |
|
super(NeuralNet, self).__init__() |
|
layers = [] |
|
in_dim = input_dim |
|
for h_dim in hidden_dims: |
|
layers.append(nn.Linear(in_dim, h_dim)) |
|
layers.append(nn.ReLU()) |
|
layers.append(nn.BatchNorm1d(h_dim)) |
|
layers.append(nn.Dropout(0.3)) |
|
in_dim = h_dim |
|
layers.append(nn.Linear(in_dim, output_dim)) |
|
self.model = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
hidden_dims = [128, 64, 32] |
|
neural_model = NeuralNet(input_dim, hidden_dims, output_dim) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4) |
|
|
|
|
|
num_epochs = 2 |
|
for epoch in range(num_epochs): |
|
neural_model.train() |
|
outputs = neural_model(X_train_tensor) |
|
loss = criterion(outputs, y_train_tensor) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
if (epoch + 1) % 20 == 0: |
|
st.write('Rete Neurale - Epoch [{}/{}], Loss: {:.4f}'.format( |
|
epoch + 1, num_epochs, loss.item())) |
|
|
|
|
|
neural_model.eval() |
|
with torch.no_grad(): |
|
outputs = neural_model(X_test_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0) |
|
|
|
|
|
st.write("\nRiepilogo delle Accuratezze:....") |
|
st.error('Accuratezza Previsione Casuale: {:.2f}%'.format(100 * random_accuracy)) |
|
st.warning('Accuratezza Modello Lineare: {:.2f}%'.format(100 * linear_accuracy)) |
|
st.success('Accuratezza Rete Neurale: {:.2f}%'.format(100 * neural_accuracy)) |
|
|
|
return linear_model, neural_model, scaler, superheroes, num_classes |
|
|
|
def get_user_input_and_predict_male_superhero(linear_model, neural_model, scaler, superheroes, num_classes): |
|
st.write("Adjust the sliders for the following superhero attributes on a scale from 1 to 10:") |
|
|
|
|
|
feature_names = ['Forza', 'Velocità', 'Intelligenza', 'Resistenza', 'Proiezione di Energia'] |
|
|
|
|
|
if 'user_features' not in st.session_state: |
|
st.session_state.user_features = [5] * len(feature_names) |
|
|
|
|
|
with st.form(key='superhero_form'): |
|
for i, feature in enumerate(feature_names): |
|
st.session_state.user_features[i] = st.slider( |
|
feature, 1, 10, st.session_state.user_features[i], key=f'slider_{i}' |
|
) |
|
|
|
|
|
submit_button = st.form_submit_button(label='Calcola Previsioni') |
|
|
|
|
|
if submit_button: |
|
|
|
user_features = st.session_state.user_features.copy() |
|
|
|
|
|
interaction_term = np.sin(user_features[0]) * np.log(user_features[2]) |
|
|
|
|
|
user_features.append(interaction_term) |
|
|
|
|
|
user_features = np.array(user_features).reshape(1, -1) |
|
|
|
|
|
user_features_scaled = scaler.transform(user_features) |
|
|
|
|
|
user_tensor = torch.from_numpy(user_features_scaled).float() |
|
|
|
|
|
random_pred = np.random.randint(num_classes) |
|
st.error(f"Previsione Casuale: {superheroes[random_pred]}") |
|
|
|
|
|
linear_model.eval() |
|
with torch.no_grad(): |
|
outputs = linear_model(user_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
linear_pred = predicted.item() |
|
st.warning(f"Previsione Modello Lineare: {superheroes[linear_pred]}") |
|
|
|
|
|
neural_model.eval() |
|
with torch.no_grad(): |
|
outputs = neural_model(user_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
neural_pred = predicted.item() |
|
st.success(f"Previsione Rete Neurale: {superheroes[neural_pred]}") |