|
import streamlit as st |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from sklearn.utils import shuffle |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
np.random.seed(42) |
|
torch.manual_seed(42) |
|
|
|
def run_disease_train(): |
|
|
|
N_per_class = 500 |
|
|
|
|
|
condizioni = ['Raffreddore Comune', 'Allergie Stagionali', 'Emicrania', 'Gastroenterite', 'Cefalea Tensiva'] |
|
|
|
|
|
num_classes = len(condizioni) |
|
|
|
|
|
N = N_per_class * num_classes |
|
|
|
|
|
D = 10 |
|
|
|
|
|
total_features = D + 2 |
|
|
|
|
|
X = np.zeros((N, total_features)) |
|
y = np.zeros(N, dtype=int) |
|
|
|
|
|
|
|
statistiche_condizioni = { |
|
'Raffreddore Comune': { |
|
'mean': [1, 6, 7, 8, 1, 1, 1, 5, 5, 5], |
|
'std': [1.5, 2, 2, 2, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
'Allergie Stagionali': { |
|
'mean': [0, 3, 8, 9, 1, 1, 1, 4, 4, 6], |
|
'std': [1.5, 2, 2, 2, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
'Emicrania': { |
|
'mean': [0, 1, 1, 1, 2, 2, 2, 8, 7, 8], |
|
'std': [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
'Gastroenterite': { |
|
'mean': [2, 2, 1, 1, 7, 6, 8, 5, 6, 5], |
|
'std': [1.5, 2, 1.5, 1.5, 2, 2, 2, 2, 2, 2] |
|
}, |
|
'Cefalea Tensiva': { |
|
'mean': [0, 1, 1, 1, 1, 1, 1, 6, 5, 8], |
|
'std': [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2] |
|
}, |
|
} |
|
|
|
|
|
for idx, condition in enumerate(condizioni): |
|
start = idx * N_per_class |
|
end = (idx + 1) * N_per_class |
|
means = statistiche_condizioni[condition]['mean'] |
|
stds = statistiche_condizioni[condition]['std'] |
|
X_condition = np.random.normal(means, stds, (N_per_class, D)) |
|
|
|
X_condition = np.clip(X_condition, 0, 10) |
|
|
|
interaction_term = np.sin(X_condition[:, 7]) * np.log1p(X_condition[:, 9]) |
|
interaction_term2 = X_condition[:, 0] * X_condition[:, 4] |
|
X_condition = np.hstack((X_condition, interaction_term.reshape(-1, 1), interaction_term2.reshape(-1, 1))) |
|
X[start:end] = X_condition |
|
y[start:end] = idx |
|
|
|
|
|
X, y = shuffle(X, y, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_scaled = scaler.fit_transform(X) |
|
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split( |
|
X_scaled, y, test_size=0.2, random_state=42 |
|
) |
|
|
|
|
|
X_train_tensor = torch.from_numpy(X_train).float() |
|
y_train_tensor = torch.from_numpy(y_train).long() |
|
X_test_tensor = torch.from_numpy(X_test).float() |
|
y_test_tensor = torch.from_numpy(y_test).long() |
|
|
|
|
|
def random_prediction(num_samples): |
|
random_preds = np.random.randint(num_classes, size=num_samples) |
|
return random_preds |
|
|
|
|
|
random_preds = random_prediction(len(y_test)) |
|
random_accuracy = (random_preds == y_test).sum() / y_test.size |
|
|
|
|
|
class LinearModel(nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super(LinearModel, self).__init__() |
|
self.linear = nn.Linear(input_dim, output_dim) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
|
|
input_dim = total_features |
|
output_dim = num_classes |
|
linear_model = LinearModel(input_dim, output_dim) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.SGD(linear_model.parameters(), lr=0.01, weight_decay=1e-4) |
|
|
|
|
|
num_epochs = 50 |
|
for epoch in range(num_epochs): |
|
linear_model.train() |
|
outputs = linear_model(X_train_tensor) |
|
loss = criterion(outputs, y_train_tensor) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
if (epoch + 1) % 25 == 0: |
|
st.write('Modello Lineare - Epoch [{}/{}], Loss: {:.4f}'.format( |
|
epoch + 1, num_epochs, loss.item())) |
|
|
|
|
|
linear_model.eval() |
|
with torch.no_grad(): |
|
outputs = linear_model(X_test_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
linear_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0) |
|
|
|
|
|
class NeuralNet(nn.Module): |
|
def __init__(self, input_dim, hidden_dims, output_dim): |
|
super(NeuralNet, self).__init__() |
|
layers = [] |
|
in_dim = input_dim |
|
for h_dim in hidden_dims: |
|
layers.append(nn.Linear(in_dim, h_dim)) |
|
layers.append(nn.ReLU()) |
|
layers.append(nn.BatchNorm1d(h_dim)) |
|
layers.append(nn.Dropout(0.5)) |
|
in_dim = h_dim |
|
layers.append(nn.Linear(in_dim, output_dim)) |
|
self.model = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
hidden_dims = [256, 128, 64] |
|
neural_model = NeuralNet(input_dim, hidden_dims, output_dim) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4) |
|
|
|
|
|
num_epochs = 300 |
|
for epoch in range(num_epochs): |
|
neural_model.train() |
|
outputs = neural_model(X_train_tensor) |
|
loss = criterion(outputs, y_train_tensor) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
if (epoch + 1) % 30 == 0: |
|
st.write('Rete Neurale - Epoch [{}/{}], Loss: {:.4f}'.format( |
|
epoch + 1, num_epochs, loss.item())) |
|
|
|
|
|
neural_model.eval() |
|
with torch.no_grad(): |
|
outputs = neural_model(X_test_tensor) |
|
_, predicted = torch.max(outputs.data, 1) |
|
neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0) |
|
|
|
|
|
st.write("\nRiepilogo delle Accuratezze:....") |
|
st.error(f'Accuratezza Previsione Casuale: {random_accuracy * 100:.2f}%') |
|
st.warning(f'Accuratezza Modello Lineare: {linear_accuracy * 100:.2f}%') |
|
st.success(f'Accuratezza Rete Neurale: {neural_accuracy * 100:.2f}%') |
|
|
|
return linear_model, neural_model, scaler, condizioni, num_classes |
|
|
|
def get_user_input_and_predict_disease(modello_lineare, modello_neurale, scaler, condizioni, num_classes): |
|
st.write("Regola i cursori per i seguenti sintomi su una scala da 0 (nessuno) a 10 (grave):") |
|
|
|
|
|
nomi_caratteristiche = ['Febbre', 'Tosse', 'Starnuti', 'Naso che Cola', 'Nausea', 'Vomito', |
|
'Diarrea', 'Mal di Testa', 'Affaticamento', 'Livello di Stress'] |
|
|
|
|
|
if 'user_features' not in st.session_state: |
|
st.session_state.user_features = [5] * len(nomi_caratteristiche) |
|
|
|
|
|
with st.form(key='symptom_form'): |
|
for i, caratteristica in enumerate(nomi_caratteristiche): |
|
st.session_state.user_features[i] = st.slider( |
|
caratteristica, 0, 10, st.session_state.user_features[i], key=f'slider_{i}' |
|
) |
|
|
|
|
|
submit_button = st.form_submit_button(label='Calcola Previsioni') |
|
if submit_button: |
|
st.session_state.form_submitted = True |
|
|
|
|
|
if st.session_state.get('form_submitted', False): |
|
user_features = st.session_state.user_features.copy() |
|
|
|
|
|
termine_interazione = np.sin(user_features[7]) * np.log1p(user_features[9]) |
|
termine_interazione2 = user_features[0] * user_features[4] |
|
user_features.extend([termine_interazione, termine_interazione2]) |
|
|
|
|
|
user_features = scaler.transform([user_features]) |
|
user_tensor = torch.from_numpy(user_features).float() |
|
|
|
|
|
previsione_casuale = np.random.randint(num_classes) |
|
st.error(f"\nPrevisione Casuale: {condizioni[previsione_casuale]}") |
|
|
|
|
|
modello_lineare.eval() |
|
with torch.no_grad(): |
|
output = modello_lineare(user_tensor) |
|
_, predetto = torch.max(output.data, 1) |
|
previsione_lineare = predetto.item() |
|
st.warning(f"Previsione Modello Lineare: {condizioni[previsione_lineare]}") |
|
|
|
|
|
modello_neurale.eval() |
|
with torch.no_grad(): |
|
output = modello_neurale(user_tensor) |
|
_, predetto = torch.max(output.data, 1) |
|
previsione_neurale = predetto.item() |
|
st.success(f"Previsione Rete Neurale: {condizioni[previsione_neurale]}") |
|
|