initial
Browse files- app.py +159 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from sklearn.utils import shuffle
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.linear_model import LogisticRegression
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
|
11 |
+
|
12 |
+
# Function for disease task
|
13 |
+
def run_disease_task():
|
14 |
+
# Number of samples per class
|
15 |
+
N_per_class = 500
|
16 |
+
|
17 |
+
# Number of classes
|
18 |
+
num_classes = 5
|
19 |
+
|
20 |
+
# Total number of samples
|
21 |
+
N = N_per_class * num_classes
|
22 |
+
|
23 |
+
# Number of features
|
24 |
+
D = 2 # For visualization purposes
|
25 |
+
|
26 |
+
# Initialize feature matrix X and label vector y
|
27 |
+
X = np.zeros((N, D))
|
28 |
+
y = np.zeros(N, dtype=int)
|
29 |
+
|
30 |
+
# Generate a multi-class spiral dataset
|
31 |
+
def generate_multi_class_spiral(points, classes):
|
32 |
+
X = np.zeros((points * classes, 2))
|
33 |
+
y = np.zeros(points * classes, dtype=int)
|
34 |
+
for class_number in range(classes):
|
35 |
+
ix = range(points * class_number, points * (class_number + 1))
|
36 |
+
r = np.linspace(0.0, 1, points)
|
37 |
+
t = np.linspace(class_number * 4, (class_number + 1) * 4, points) + np.random.randn(points) * 0.2
|
38 |
+
X[ix] = np.c_[r * np.sin(t), r * np.cos(t)]
|
39 |
+
y[ix] = class_number
|
40 |
+
return X, y
|
41 |
+
|
42 |
+
X, y = generate_multi_class_spiral(N_per_class, num_classes)
|
43 |
+
|
44 |
+
# Shuffle the dataset
|
45 |
+
X, y = shuffle(X, y, random_state=42)
|
46 |
+
|
47 |
+
# Normalize the features
|
48 |
+
scaler = StandardScaler()
|
49 |
+
X_scaled = scaler.fit_transform(X)
|
50 |
+
|
51 |
+
# Convert data to torch tensors
|
52 |
+
X_train_tensor = torch.from_numpy(X_scaled).float()
|
53 |
+
y_train_tensor = torch.from_numpy(y).long()
|
54 |
+
|
55 |
+
# Split data into training and test sets
|
56 |
+
X_train_tensor, X_test_tensor, y_train_tensor, y_test_tensor = train_test_split(
|
57 |
+
X_train_tensor, y_train_tensor, test_size=0.2, random_state=42
|
58 |
+
)
|
59 |
+
|
60 |
+
# Logistic Regression Model
|
61 |
+
linear_model = LogisticRegression(max_iter=200)
|
62 |
+
linear_model.fit(X_scaled[: int(0.8 * N)], y[: int(0.8 * N)])
|
63 |
+
|
64 |
+
# Linear model accuracy
|
65 |
+
linear_accuracy = linear_model.score(X_scaled[int(0.8 * N) :], y[int(0.8 * N) :])
|
66 |
+
|
67 |
+
# Neural Network Model
|
68 |
+
class NeuralNet(nn.Module):
|
69 |
+
def __init__(self, input_dim, hidden_dims, output_dim):
|
70 |
+
super(NeuralNet, self).__init__()
|
71 |
+
layers = []
|
72 |
+
in_dim = input_dim
|
73 |
+
for h_dim in hidden_dims:
|
74 |
+
layers.append(nn.Linear(in_dim, h_dim))
|
75 |
+
layers.append(nn.ReLU())
|
76 |
+
layers.append(nn.BatchNorm1d(h_dim))
|
77 |
+
layers.append(nn.Dropout(0.3))
|
78 |
+
in_dim = h_dim
|
79 |
+
layers.append(nn.Linear(in_dim, output_dim))
|
80 |
+
self.model = nn.Sequential(*layers)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
return self.model(x)
|
84 |
+
|
85 |
+
# Initialize Neural Network Model
|
86 |
+
hidden_dims = [128, 64, 32]
|
87 |
+
neural_model = NeuralNet(D, hidden_dims, num_classes)
|
88 |
+
|
89 |
+
# Loss and optimizer for Neural Network Model
|
90 |
+
criterion = nn.CrossEntropyLoss()
|
91 |
+
optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4)
|
92 |
+
|
93 |
+
# Training the Neural Network Model
|
94 |
+
num_epochs = 200
|
95 |
+
for epoch in range(num_epochs):
|
96 |
+
neural_model.train()
|
97 |
+
outputs = neural_model(X_train_tensor)
|
98 |
+
loss = criterion(outputs, y_train_tensor)
|
99 |
+
optimizer.zero_grad()
|
100 |
+
loss.backward()
|
101 |
+
optimizer.step()
|
102 |
+
if (epoch + 1) % 20 == 0:
|
103 |
+
st.write(f'Neural Network - Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
104 |
+
|
105 |
+
# Evaluate Neural Network Model
|
106 |
+
neural_model.eval()
|
107 |
+
with torch.no_grad():
|
108 |
+
outputs = neural_model(X_test_tensor)
|
109 |
+
_, predicted = torch.max(outputs.data, 1)
|
110 |
+
neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0)
|
111 |
+
st.write(f'Neural Network Model Accuracy: {neural_accuracy * 100:.2f}%')
|
112 |
+
|
113 |
+
# Summary of Accuracies
|
114 |
+
st.write("\nSummary of Accuracies:")
|
115 |
+
st.write(f'Linear Model Accuracy: {linear_accuracy * 100:.2f}%')
|
116 |
+
st.write(f'Neural Network Model Accuracy: {neural_accuracy * 100:.2f}%')
|
117 |
+
|
118 |
+
|
119 |
+
# Function for male superhero task
|
120 |
+
def run_male_superhero_task():
|
121 |
+
st.write("Training Male Superhero model...")
|
122 |
+
# Male superhero training logic goes here
|
123 |
+
# Add dummy print statements as a placeholder
|
124 |
+
st.write("Male superhero model - Step 1: Data prepared.")
|
125 |
+
st.write("Male superhero model - Step 2: Model trained.")
|
126 |
+
st.write("Male superhero model - Step 3: Results evaluated.")
|
127 |
+
|
128 |
+
|
129 |
+
# Function for female superhero task
|
130 |
+
def run_female_superhero_task():
|
131 |
+
st.write("Training Female Superhero model...")
|
132 |
+
# Female superhero training logic goes here
|
133 |
+
# Add dummy print statements as a placeholder
|
134 |
+
st.write("Female superhero model - Step 1: Data prepared.")
|
135 |
+
st.write("Female superhero model - Step 2: Model trained.")
|
136 |
+
st.write("Female superhero model - Step 3: Results evaluated.")
|
137 |
+
|
138 |
+
|
139 |
+
# Streamlit UI
|
140 |
+
st.title("AI Training Demo")
|
141 |
+
|
142 |
+
# Task selection buttons
|
143 |
+
task = st.selectbox("Choose a task:", ("Superhero", "Disease"))
|
144 |
+
|
145 |
+
if task == "Superhero":
|
146 |
+
# Sub-options for Male and Female Superhero
|
147 |
+
gender = st.selectbox("Choose the gender:", ("Male", "Female"))
|
148 |
+
|
149 |
+
if gender == "Male":
|
150 |
+
if st.button("Run Male Superhero Task"):
|
151 |
+
run_male_superhero_task()
|
152 |
+
|
153 |
+
elif gender == "Female":
|
154 |
+
if st.button("Run Female Superhero Task"):
|
155 |
+
run_female_superhero_task()
|
156 |
+
|
157 |
+
elif task == "Disease":
|
158 |
+
if st.button("Run Disease Task"):
|
159 |
+
run_disease_task()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn
|