Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -32,14 +32,13 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
32 |
token=api_token
|
33 |
)
|
34 |
|
35 |
-
# Ensure eos_token_id is set
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
model.generation_config.eos_token_id = eos_token_id
|
43 |
|
44 |
# Preprocess image
|
45 |
def preprocess_image(image):
|
@@ -49,31 +48,31 @@ def preprocess_image(image):
|
|
49 |
# Handle queries
|
50 |
def analyze_input(image, question):
|
51 |
try:
|
52 |
-
#
|
53 |
pixel_values = None
|
54 |
if image is not None:
|
55 |
image = image.convert('RGB')
|
56 |
pixel_values = preprocess_image(image)
|
57 |
-
|
58 |
# Tokenize the question
|
59 |
tokenized = tokenizer(question, return_tensors="pt")
|
60 |
input_ids = tokenized.input_ids.to(model.device)
|
61 |
-
|
62 |
-
# Calculate target size
|
63 |
-
tgt_size = input_ids.size(1) + 256 #
|
64 |
-
|
65 |
# Construct the model_inputs dictionary
|
66 |
model_inputs = {
|
67 |
"input_ids": input_ids,
|
68 |
"pixel_values": pixel_values,
|
69 |
-
"tgt_sizes": [tgt_size]
|
70 |
}
|
71 |
|
72 |
-
# Generate
|
73 |
outputs = model.generate(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
)
|
78 |
|
79 |
# Decode the response
|
|
|
32 |
token=api_token
|
33 |
)
|
34 |
|
35 |
+
# Ensure `eos_token_id` is properly set
|
36 |
+
eos_token_id = tokenizer.eos_token_id or tokenizer.pad_token_id
|
37 |
+
if eos_token_id is None:
|
38 |
+
raise ValueError(
|
39 |
+
"Neither `eos_token_id` nor `pad_token_id` is defined in the tokenizer. Please specify one explicitly."
|
40 |
+
)
|
41 |
+
model.generation_config.eos_token_id = eos_token_id
|
|
|
42 |
|
43 |
# Preprocess image
|
44 |
def preprocess_image(image):
|
|
|
48 |
# Handle queries
|
49 |
def analyze_input(image, question):
|
50 |
try:
|
51 |
+
# Prepare pixel values for image input
|
52 |
pixel_values = None
|
53 |
if image is not None:
|
54 |
image = image.convert('RGB')
|
55 |
pixel_values = preprocess_image(image)
|
56 |
+
|
57 |
# Tokenize the question
|
58 |
tokenized = tokenizer(question, return_tensors="pt")
|
59 |
input_ids = tokenized.input_ids.to(model.device)
|
60 |
+
|
61 |
+
# Calculate target size for generation
|
62 |
+
tgt_size = input_ids.size(1) + 256 # Input size + max new tokens
|
63 |
+
|
64 |
# Construct the model_inputs dictionary
|
65 |
model_inputs = {
|
66 |
"input_ids": input_ids,
|
67 |
"pixel_values": pixel_values,
|
68 |
+
"tgt_sizes": [tgt_size]
|
69 |
}
|
70 |
|
71 |
+
# Generate response
|
72 |
outputs = model.generate(
|
73 |
+
input_ids=model_inputs["input_ids"],
|
74 |
+
max_new_tokens=256,
|
75 |
+
eos_token_id=model.generation_config.eos_token_id
|
76 |
)
|
77 |
|
78 |
# Decode the response
|