Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,16 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
-
# Retrieve the token
|
7 |
-
api_token = os.getenv("HF_TOKEN")
|
8 |
|
9 |
-
# Load the Hugging Face model and tokenizer with
|
10 |
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=api_token)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, use_auth_token=api_token)
|
13 |
|
14 |
|
|
|
15 |
# Define the function to process user input
|
16 |
def generate_response(input_text):
|
17 |
try:
|
|
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
+
# Retrieve the token and strip any whitespace or newline characters
|
7 |
+
api_token = os.getenv("HF_TOKEN").strip()
|
8 |
|
9 |
+
# Load the Hugging Face model and tokenizer with the cleaned token
|
10 |
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=api_token)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, use_auth_token=api_token)
|
13 |
|
14 |
|
15 |
+
|
16 |
# Define the function to process user input
|
17 |
def generate_response(input_text):
|
18 |
try:
|