Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -25,21 +25,20 @@ model = AutoModel.from_pretrained(
|
|
25 |
torch_dtype=torch.float16,
|
26 |
trust_remote_code=True,
|
27 |
token=api_token,
|
28 |
-
revision="main"
|
29 |
)
|
30 |
|
31 |
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
33 |
trust_remote_code=True,
|
34 |
token=api_token,
|
35 |
-
revision="main"
|
36 |
)
|
37 |
|
38 |
def analyze_input(image_data, question):
|
39 |
try:
|
40 |
# Handle base64 image if provided
|
41 |
if isinstance(image_data, str) and image_data.startswith('data:image'):
|
42 |
-
# Extract base64 data after the comma
|
43 |
base64_data = image_data.split(',')[1]
|
44 |
image_bytes = base64.b64decode(base64_data)
|
45 |
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
@@ -51,14 +50,30 @@ def analyze_input(image_data, question):
|
|
51 |
|
52 |
# Process with or without image
|
53 |
if image is not None:
|
54 |
-
inputs
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
else:
|
59 |
-
inputs
|
|
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
|
64 |
return {
|
@@ -81,10 +96,10 @@ demo = gr.Interface(
|
|
81 |
outputs=gr.JSON(label="Analysis"),
|
82 |
title="Bio-Medical MultiModal Analysis",
|
83 |
description="Ask questions with or without an image",
|
84 |
-
flagging_mode="never"
|
85 |
)
|
86 |
|
87 |
-
# Launch
|
88 |
demo.launch(
|
89 |
share=True,
|
90 |
server_name="0.0.0.0",
|
|
|
25 |
torch_dtype=torch.float16,
|
26 |
trust_remote_code=True,
|
27 |
token=api_token,
|
28 |
+
revision="main"
|
29 |
)
|
30 |
|
31 |
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
33 |
trust_remote_code=True,
|
34 |
token=api_token,
|
35 |
+
revision="main"
|
36 |
)
|
37 |
|
38 |
def analyze_input(image_data, question):
|
39 |
try:
|
40 |
# Handle base64 image if provided
|
41 |
if isinstance(image_data, str) and image_data.startswith('data:image'):
|
|
|
42 |
base64_data = image_data.split(',')[1]
|
43 |
image_bytes = base64.b64decode(base64_data)
|
44 |
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
|
|
50 |
|
51 |
# Process with or without image
|
52 |
if image is not None:
|
53 |
+
# Prepare inputs for multimodal generation
|
54 |
+
model_inputs = {
|
55 |
+
"input_ids": tokenizer(question, return_tensors="pt").input_ids.to(model.device),
|
56 |
+
"images": [image]
|
57 |
+
}
|
58 |
else:
|
59 |
+
# Prepare inputs for text-only generation
|
60 |
+
model_inputs = {
|
61 |
+
"input_ids": tokenizer(question, return_tensors="pt").input_ids.to(model.device)
|
62 |
+
}
|
63 |
|
64 |
+
# Generate response with proper inputs
|
65 |
+
generation_config = {
|
66 |
+
"max_new_tokens": 256,
|
67 |
+
"do_sample": True,
|
68 |
+
"temperature": 0.7,
|
69 |
+
"top_p": 0.9,
|
70 |
+
}
|
71 |
+
|
72 |
+
outputs = model.generate(
|
73 |
+
model_inputs=model_inputs,
|
74 |
+
**generation_config
|
75 |
+
)
|
76 |
+
|
77 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
78 |
|
79 |
return {
|
|
|
96 |
outputs=gr.JSON(label="Analysis"),
|
97 |
title="Bio-Medical MultiModal Analysis",
|
98 |
description="Ask questions with or without an image",
|
99 |
+
flagging_mode="never"
|
100 |
)
|
101 |
|
102 |
+
# Launch the interface
|
103 |
demo.launch(
|
104 |
share=True,
|
105 |
server_name="0.0.0.0",
|