sounar commited on
Commit
c600b9f
·
verified ·
1 Parent(s): e8eeeb2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -9
app.py CHANGED
@@ -17,7 +17,7 @@ bnb_config = BitsAndBytesConfig(
17
  bnb_4bit_compute_dtype=torch.float16
18
  )
19
 
20
- # Load model with revision pinning - using CausalLM for text generation
21
  model = AutoModelForCausalLM.from_pretrained(
22
  "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
23
  quantization_config=bnb_config,
@@ -44,16 +44,25 @@ def analyze_input(image_data, question):
44
  prompt = f"Medical question: {question}\nAnswer: "
45
 
46
  # Tokenize input
47
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
 
 
 
 
 
 
48
 
49
  # Generate response
 
 
 
 
 
 
 
50
  outputs = model.generate(
51
- **inputs,
52
- max_new_tokens=256,
53
- do_sample=True,
54
- temperature=0.7,
55
- top_p=0.9,
56
- pad_token_id=tokenizer.eos_token_id
57
  )
58
 
59
  # Decode and clean up response
@@ -82,7 +91,7 @@ demo = gr.Interface(
82
  ],
83
  outputs=gr.JSON(label="Analysis"),
84
  title="Medical Query Analysis",
85
- description="Ask medical questions with or without images. For general medical queries, no image is needed.",
86
  flagging_mode="never"
87
  )
88
 
 
17
  bnb_4bit_compute_dtype=torch.float16
18
  )
19
 
20
+ # Load model with revision pinning
21
  model = AutoModelForCausalLM.from_pretrained(
22
  "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
23
  quantization_config=bnb_config,
 
44
  prompt = f"Medical question: {question}\nAnswer: "
45
 
46
  # Tokenize input
47
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
48
+
49
+ # Prepare model inputs
50
+ model_inputs = {
51
+ "input_ids": input_ids,
52
+ "pixel_values": None # Set to None for text-only queries
53
+ }
54
 
55
  # Generate response
56
+ generation_config = {
57
+ "max_new_tokens": 256,
58
+ "do_sample": True,
59
+ "temperature": 0.7,
60
+ "top_p": 0.9,
61
+ }
62
+
63
  outputs = model.generate(
64
+ model_inputs=model_inputs,
65
+ **generation_config
 
 
 
 
66
  )
67
 
68
  # Decode and clean up response
 
91
  ],
92
  outputs=gr.JSON(label="Analysis"),
93
  title="Medical Query Analysis",
94
+ description="Ask medical questions. For now, please focus on text-based queries without images.",
95
  flagging_mode="never"
96
  )
97