File size: 7,823 Bytes
29730dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr

from models.custom_resnet import CustomResNet
from modules.visualize import plot_gradcam_images, plot_misclassified_images
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from torchvision import transforms
import modules.config as config
import numpy as np
import torch
from PIL import Image


TITLE = "CIFAR10 Image classification using a Custom ResNet Model"
DESCRIPTION = "Gradio App to infer using a Custom ResNet model and get GradCAM results"
examples = [
    ["assets/images/airplane.jpg", 3, True, "layer3_x", 0.6, True, 5, True, 5],
    ["assets/images/bird.jpeg", 4, True, "layer3_x", 0.7, True, 10, True, 20],
    ["assets/images/car.jpg", 5, True, "layer3_x", 0.5, True, 15, True, 5],
    ["assets/images/cat.jpeg", 6, True, "layer3_x", 0.65, True, 20, True, 10],
    ["assets/images/deer.jpg", 7, False, "layer2", 0.75, True, 5, True, 5],
    ["assets/images/dog.jpg", 8, True, "layer2", 0.55, True, 10, True, 5],
    ["assets/images/frog.jpeg", 9, True, "layer2", 0.8, True, 15, True, 15],
    ["assets/images/horse.jpg", 10, False, "layer1_r1", 0.85, True, 20, True, 5],
    ["assets/images/ship.jpg", 3, True, "layer1_r1", 0.4, True, 5, True, 15],
    ["assets/images/truck.jpg", 4, True, "layer1_r1", 0.3, True, 5, True, 10],
]


# load and initialise the model

model = CustomResNet()

# Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Using the checkpoint path present in config, load the trained model
model.load_state_dict(torch.load(config.GRADIO_MODEL_PATH, map_location=device), strict=False)
# Send model to CPU
model.to(device)
# Make the model in evaluation mode
model.eval()

# Load the misclassified images data
misclassified_image_data = torch.load(config.GRADIO_MISCLASSIFIED_PATH, map_location=device)

# Class Names
classes = list(config.CIFAR_CLASSES)
# Allowed model names
model_layer_names = ["prep", "layer1_x", "layer1_r1", "layer2", "layer3_x", "layer3_r2"]


def get_target_layer(layer_name):
    """Get target layer for visualization"""
    if layer_name == "prep":
        return [model.prep[-1]]
    elif layer_name == "layer1_x":
        return [model.layer1_x[-1]]
    elif layer_name == "layer1_r1":
        return [model.layer1_r1[-1]]
    elif layer_name == "layer2":
        return [model.layer2[-1]]
    elif layer_name == "layer3_x":
        return [model.layer3_x[-1]]
    elif layer_name == "layer3_r2":
        return [model.layer3_r2[-1]]
    else:
        return None
    

def generate_prediction(input_image, num_classes=3, show_gradcam=True, transparency=0.6, layer_name="layer3_x"):
    """ "Given an input image, generate the prediction, confidence and display_image"""
    mean = list(config.CIFAR_MEAN)
    std = list(config.CIFAR_STD)
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])

    with torch.no_grad():
        orginal_img = input_image
        input_image = transform(input_image).unsqueeze(0).to(device)
        # print(f"Input Device: {input_image.device}")
        model_output = model(input_image).to(device)
        # print(f"Output Device: {outputs.device}")
        output_exp = torch.exp(model_output).to(device)
        # print(f"Output Exp Device: {o.device}")

        output_numpy = np.squeeze(np.asarray(output_exp.numpy()))
        # get indexes of probabilties in descending order
        sorted_indexes = np.argsort(output_numpy)[::-1]
        # sort the probabilities in descending order
        # final_class = classes[o_np.argmax()]

        confidences = {}
        for _ in range(int(num_classes)):
            # set the confidence of highest class with highest probability
            confidences[classes[sorted_indexes[_]]] = float(output_numpy[sorted_indexes[_]])

    # Show Grad Cam
    if show_gradcam:
        # Get the target layer
        target_layers = get_target_layer(layer_name)
        cam = GradCAM(model=model, target_layers=target_layers)
        cam_generated = cam(input_tensor=input_image, targets=None)
        cam_generated = cam_generated[0, :]
        display_image = show_cam_on_image(orginal_img / 255, cam_generated, use_rgb=True, image_weight=transparency)

    else:
        display_image = orginal_img

    return confidences, display_image


def app_interface(
    input_image,
    num_classes,
    show_gradcam,
    layer_name,
    transparency,
    show_misclassified,
    num_misclassified,
    show_gradcam_misclassified,
    num_gradcam_misclassified,
):
    """Function which provides the Gradio interface"""
    input_image = resize_image_pil(input_image, 32, 32)

    input_image = np.array(input_image)
    org_img = input_image
    # Get the prediction for the input image along with confidence and display_image
    confidences, display_image = generate_prediction(org_img, num_classes, show_gradcam, transparency, layer_name)

    if show_misclassified:
        misclassified_fig, misclassified_axs = plot_misclassified_images(
            data=misclassified_image_data, class_label=classes, num_images=num_misclassified
        )
    else:
        misclassified_fig = None

    if show_gradcam_misclassified:
        gradcam_fig, gradcam_axs = plot_gradcam_images(
            model=model,
            data=misclassified_image_data,
            class_label=classes,
            # Use penultimate block of resnet18 layer 3 as the target layer for gradcam
            # Decided using model summary so that dimensions > 7x7
            target_layers=get_target_layer(layer_name),
            targets=None,
            num_images=num_gradcam_misclassified,
            image_weight=transparency,
        )
    else:
        gradcam_fig = None

    # # delete ununsed axises
    # del misclassified_axs
    # del gradcam_axs

    return confidences, display_image, misclassified_fig, gradcam_fig

def resize_image_pil(image, new_width, new_height):

    # Convert to PIL image
    img = Image.fromarray(np.array(image))
    
    # Get original size
    width, height = img.size

    # Calculate scale
    width_scale = new_width / width
    height_scale = new_height / height 
    scale = min(width_scale, height_scale)

    # Resize
    resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
    
    # Crop to exact size
    resized = resized.crop((0, 0, new_width, new_height))

    return resized



inference_app = gr.Interface(
    app_interface,
    inputs=[
        # This accepts the image after resizing it to 32x32 which is what our model expects
        gr.Image(width=256, height=256, label="Input Image"),
        gr.Number(value=3, maximum=10, minimum=1, step=1.0, precision=0, label="#Classes to show"),
        gr.Checkbox(True, label="Show GradCAM Image"),
        gr.Dropdown(model_layer_names, value="layer3_x", label="Visulalization Layer from Model"),
        # How much should the image be overlayed on the original image
        gr.Slider(0, 1, 0.6, label="Image Overlay Factor"),
        gr.Checkbox(True, label="Show Misclassified Images?"),
        gr.Slider(value=10, maximum=25, minimum=5, step=5.0, label="#Misclassified images to show"),
        gr.Checkbox(True, label="Visulize GradCAM for Misclassified images?"),
        gr.Slider(value=10, maximum=25, minimum=5, step=5.0, label="#GradCAM images to show"),
    ],
    outputs=[
        gr.Label(label="Confidences", container=True, show_label=True),
        gr.Image(label="Grad CAM/ Input Image", container=True, show_label=True,height=256,width=256),
        gr.Plot(label="Misclassified images", container=True, show_label=True),
        gr.Plot(label="Grad CAM of Misclassified images", container=True, show_label=True),
    ],
    title=TITLE,
    description=DESCRIPTION,
    examples=examples,
)
inference_app.launch()