|
from ultralytics import YOLO
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import gradio as gr
|
|
import cv2
|
|
import torch
|
|
|
|
model = YOLO('checkpoints/FastSAM.pt')
|
|
|
|
|
|
def fast_process(annotations, image):
|
|
fig = plt.figure(figsize=(10, 10))
|
|
plt.imshow(image)
|
|
|
|
|
|
|
|
|
|
|
|
fast_show_mask(annotations,
|
|
plt.gca())
|
|
|
|
|
|
plt.axis('off')
|
|
plt.tight_layout()
|
|
return fig
|
|
|
|
|
|
|
|
def fast_show_mask(annotation, ax):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
|
|
areas = np.sum(annotation, axis=(1, 2))
|
|
sorted_indices = np.argsort(areas)[::1]
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).argmax(axis=0)
|
|
color = np.random.random((msak_sum, 1, 1, 3))
|
|
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
|
|
visual = np.concatenate([color, transparency], axis=-1)
|
|
mask_image = np.expand_dims(annotation, -1) * visual
|
|
|
|
show = np.zeros((height, weight, 4))
|
|
|
|
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
show[h_indices, w_indices, :] = mask_image[indices]
|
|
|
|
|
|
|
|
|
|
ax.imshow(show)
|
|
|
|
|
|
|
|
|
|
|
|
def predict(input, input_size):
|
|
input_size = int(input_size)
|
|
results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
|
pil_image = fast_process(annotations=results[0].masks.data, image=input)
|
|
|
|
return pil_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Interface(fn=predict,
|
|
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=1024)],
|
|
outputs=['plot'],
|
|
examples=[["assets/sa_8776.jpg", 1024]],
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
demo.launch()
|
|
"""
|
|
|
|
from ultralytics import YOLO
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import gradio as gr
|
|
import torch
|
|
|
|
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
|
|
|
|
def format_results(result,filter = 0):
|
|
annotations = []
|
|
n = len(result.masks.data)
|
|
for i in range(n):
|
|
annotation = {}
|
|
mask = result.masks.data[i] == 1.0
|
|
|
|
if torch.sum(mask) < filter:
|
|
continue
|
|
annotation['id'] = i
|
|
annotation['segmentation'] = mask.cpu().numpy()
|
|
annotation['bbox'] = result.boxes.data[i]
|
|
annotation['score'] = result.boxes.conf[i]
|
|
annotation['area'] = annotation['segmentation'].sum()
|
|
annotations.append(annotation)
|
|
return annotations
|
|
|
|
def show_mask(annotation, ax, random_color=True, bbox=None, points=None):
|
|
if random_color : # random mask color
|
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
|
else:
|
|
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
|
if type(annotation) == dict:
|
|
annotation = annotation['segmentation']
|
|
mask = annotation
|
|
h, w = mask.shape[-2:]
|
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
|
# draw box
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
# draw point
|
|
if points is not None:
|
|
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g')
|
|
ax.imshow(mask_image)
|
|
return mask_image
|
|
|
|
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None):
|
|
fig = plt.figure(figsize=(10, 10))
|
|
plt.imshow(image)
|
|
for i, mask in enumerate(annotations):
|
|
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points)
|
|
plt.axis('off')
|
|
|
|
plt.tight_layout()
|
|
return fig
|
|
|
|
|
|
# post_process(results[0].masks, Image.open("../data/cake.png"))
|
|
|
|
def predict(input, input_size):
|
|
input_size = int(input_size) # 确保 imgsz 是整数
|
|
results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
|
results = format_results(results[0], 100)
|
|
results.sort(key=lambda x: x['area'], reverse=True)
|
|
pil_image = post_process(annotations=results, image=input)
|
|
return pil_image
|
|
|
|
# inp = 'assets/sa_192.jpg'
|
|
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
|
|
# results = format_results(results[0], 100)
|
|
# post_process(annotations=results, image_path=inp)
|
|
|
|
demo = gr.Interface(fn=predict,
|
|
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=1024)],
|
|
outputs=['plot'],
|
|
examples=[["assets/sa_8776.jpg", 1024]],
|
|
# ["assets/sa_1309.jpg", 1024]],
|
|
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
|
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
|
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
|
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
|
)
|
|
|
|
demo.launch()
|
|
|
|
""" |