soyleyicicem commited on
Commit
af9408a
·
verified ·
1 Parent(s): 3b93df9

Upload 8 files

Browse files
Files changed (8) hide show
  1. __init__.py +0 -0
  2. app.py +105 -0
  3. db_operations.py +91 -0
  4. embedding_loader.py +22 -0
  5. initialize_db.py +41 -0
  6. pdf_loader.py +111 -0
  7. requirements.txt +211 -0
  8. wrappers.py +549 -0
__init__.py ADDED
File without changes
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import uuid
2
+ from wrappers import *
3
+ from embedding_loader import *
4
+ from initialize_db import QdrantClientInitializer
5
+ from pdf_loader import PDFLoader
6
+ from IPython.display import display, Markdown
7
+ import gradio as gr
8
+ from langchain_core.messages import HumanMessage, AIMessage
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain_core.chat_history import InMemoryChatMessageHistory
11
+
12
+ embeddings = import_embedding()
13
+ AZURE_OPENAI_KEY = os.getenv('azure_api')
14
+ os.environ['AZURE_OPENAI_KEY'] = AZURE_OPENAI_KEY
15
+ openai.api_version = "2024-02-15-preview" # change it with your own version
16
+ openai.azure_endpoint = os.getenv('azure_endpoint')
17
+ model = "gpt35turbo" # deployment name on Azure OPENAI Studio
18
+ myLLM = AzureChatOpenAI(azure_endpoint = openai.azure_endpoint,
19
+ api_key=AZURE_OPENAI_KEY,
20
+ api_version=openai.api_version,
21
+ temperature=0,
22
+ streaming=True,
23
+ model = model,)
24
+
25
+ obj_qdrant = QdrantClientInitializer()
26
+ client = obj_qdrant.initialize_db()
27
+ obj_loader = PDFLoader()
28
+
29
+ def print_result(question, result):
30
+ output_text = f"""### Question:
31
+ {question}
32
+ ### Answer:
33
+ {result}
34
+ """
35
+ return(output_text)
36
+
37
+ def format_chat_prompt(chat_history):
38
+ prompt = []
39
+
40
+ for turn in chat_history:
41
+ user_message, ai_message = turn
42
+ prompt.append(HumanMessage(user_message))
43
+ prompt.append(AIMessage(ai_message))
44
+
45
+ chat_history = InMemoryChatMessageHistory(messages=prompt)
46
+ memory = ConversationBufferMemory(chat_memory=chat_history, memory_key="history", input_key="question")
47
+ return memory
48
+
49
+ def chat(question, manual, history):
50
+ history = history or []
51
+ memory = format_chat_prompt(history)
52
+ manual_list = {"Toyota_Corolla_2024_TR": -8580416610875007536,
53
+ "Renault_Clio_2024_TR":-5514489544983735006,
54
+ "Fiat_Egea_2024_TR":-2026113796962100812}
55
+
56
+ collection_list = {"Toyota_Corolla_2024_TR": "TOYOTA_MANUAL_COLLECTION_EMBED3",
57
+ "Renault_Clio_2024_TR": "RENAULT_MANUAL_COLLECTION_EMBED3",
58
+ "Fiat_Egea_2024_TR": "FIAT_MANUAL_COLLECTION_EMBED3"}
59
+
60
+ collection_name = collection_list[f"{manual}"]
61
+
62
+ db = obj_loader.load_from_database(embeddings=embeddings, collection_name=collection_name)
63
+
64
+ CAR_ID = manual_list[f"{manual}"]
65
+ wrapper = Wrappers(collection_name, client, embeddings, myLLM, db, CAR_ID, memory)
66
+
67
+ inputs = {"question": question, "iter_halucination": 0}
68
+ app = wrapper.lagchain_graph()
69
+
70
+ for output in app.stream(inputs):
71
+ for key, value in output.items():
72
+ pprint(f"Finished running: {key}:")
73
+ # display(Markdown(print_result(question, value["generation"]['text'])))
74
+ response = value["generation"]['text']
75
+ history.append((question, response))
76
+
77
+ point_id = uuid.uuid4().hex
78
+ DatabaseOperations.save_user_history_demo(client, "USER_COLLECTION_EMBED3", question, response, embeddings, point_id, manual)
79
+
80
+ return '', history
81
+
82
+ def vote(data: gr.LikeData):
83
+ if data.liked:
84
+ print("You upvoted this response: ")
85
+ return "OK"
86
+ else:
87
+ print("You downvoted this response: " )
88
+ return "NOK"
89
+
90
+
91
+
92
+ manual_list = ["Toyota_Corolla_2024_TR", "Renault_Clio_2024_TR", "Fiat_Egea_2024_TR"]
93
+
94
+ with gr.Blocks() as demo:
95
+
96
+ chatbot = gr.Chatbot(height=600)
97
+ manual = gr.Dropdown(label="Kullanım Kılavuzları", value="Toyota_Corolla_2024_TR", choices=manual_list)
98
+ textbox = gr.Textbox()
99
+ clear = gr.ClearButton(components=[textbox, chatbot], value='Clear console')
100
+ textbox.submit(chat, [textbox, manual, chatbot], [textbox, chatbot])
101
+ chatbot.like(vote, None, None) # Adding this line causes the like/dislike icons to appear in your chatbot
102
+
103
+ # gr.close_all()
104
+ demo.launch(share=True)
105
+
db_operations.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ from qdrant_client import QdrantClient, models
3
+ from langchain_qdrant import Qdrant
4
+
5
+ class DatabaseOperations:
6
+
7
+ def __init__(self):
8
+ pass
9
+
10
+ def save_user_history(client, collection_name, question, answer, embeddings, point_id, user_id, session_id):
11
+
12
+ vector = embeddings.embed_documents([question])[0]
13
+ client.upsert(
14
+ collection_name=collection_name,
15
+ points=[
16
+ models.PointStruct(
17
+ id=point_id,
18
+ payload={"user_id": user_id,
19
+ "session_id": session_id,
20
+ "create_date": datetime.datetime.now().isoformat(),
21
+ "question": question,
22
+ "answer": answer},
23
+ vector=vector,
24
+ )
25
+ ],
26
+ )
27
+
28
+ def save_user_history_demo(client, collection_name, question, answer, embeddings, point_id, manual):
29
+
30
+ vector = embeddings.embed_documents([question])[0]
31
+ client.upsert(
32
+ collection_name=collection_name,
33
+ points=[
34
+ models.PointStruct(
35
+ id=point_id,
36
+ payload={"manual": manual,
37
+ "create_date": datetime.datetime.now().isoformat(),
38
+ "question": question,
39
+ "answer": answer},
40
+ vector=vector,
41
+ )
42
+ ],
43
+ )
44
+
45
+ def question_history_search(client, collection_name, car_id, question, embeddings, threshold=0.9):
46
+
47
+ CAR_ID = car_id
48
+
49
+ vector = embeddings.embed_documents([question])[0]
50
+
51
+ search_result = client.search(collection_name=collection_name,
52
+ query_vector=vector,
53
+ query_filter=models.Filter(
54
+ must=[
55
+ models.FieldCondition(key="car_id", match=models.MatchValue(value=CAR_ID)),
56
+ models.FieldCondition(key="source_name", match=models.MatchValue(value="User Question"))
57
+ ]
58
+ ),
59
+ score_threshold=threshold,
60
+ limit=1)
61
+ return search_result
62
+
63
+ def user_history_scroll(client, collection_name, user_id, key="user_id"):
64
+
65
+ history = client.scroll(collection_name=collection_name,
66
+ scroll_filter=models.Filter(
67
+ must=[
68
+ models.FieldCondition(key=key, match=models.MatchValue(value=user_id))
69
+ ]
70
+ ))
71
+ return history
72
+
73
+ def save_question_history(client, collection_name, question, answer, embeddings,
74
+ point_id, car_id, source_name, model_year):
75
+
76
+ vector = embeddings.embed_documents([question])[0]
77
+ client.upsert(
78
+ collection_name=collection_name,
79
+ points=[
80
+ models.PointStruct(
81
+ id=point_id,
82
+ payload={"source_name": source_name,
83
+ "page_content": question,
84
+ "car_id": car_id,
85
+ "model_year": model_year,
86
+ "create_date": datetime.datetime.now().isoformat(),
87
+ "answer": answer},
88
+ vector=vector,
89
+ )
90
+ ],
91
+ )
embedding_loader.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_huggingface import HuggingFaceEmbeddings
2
+ from langchain_openai import AzureOpenAIEmbeddings
3
+ import openai
4
+ import os
5
+ def import_embedding():
6
+ # embedding_name = None
7
+ # myEmbeddingModel = HuggingFaceEmbeddings(
8
+ # model_name = embedding_name,
9
+ # model_kwargs = {'device':'cuda'},
10
+ # encode_kwargs={'normalize_embeddings':True})
11
+
12
+ AZURE_OPENAI_KEY = os.getenv('azure_api')
13
+ os.environ['AZURE_OPENAI_KEY'] = AZURE_OPENAI_KEY
14
+ openai.api_version = "2024-02-15-preview" # change it with your own version
15
+ openai.azure_endpoint = os.getenv('azure_endpoint')
16
+ embedding_name = "embedding3large" # deployment name on Azure OPENAI Studio
17
+ myEmbeddingModel = AzureOpenAIEmbeddings(azure_deployment=embedding_name,
18
+ azure_endpoint = openai.azure_endpoint,
19
+ api_key=AZURE_OPENAI_KEY,
20
+ api_version=openai.api_version)
21
+
22
+ return myEmbeddingModel
initialize_db.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import subprocess
3
+ from qdrant_client import QdrantClient, models
4
+ import os
5
+ class QdrantClientInitializer:
6
+
7
+ def __init__(self):
8
+ pass
9
+
10
+ def run_docker(self):
11
+ # Define the Docker command
12
+ docker_command = [
13
+ "docker run -d -p 6333:6333 -p 6334:6334 \
14
+ -v $(pwd)/qdrant_storage:/qdrant/storage:z \
15
+ qdrant/qdrant"
16
+ ]
17
+
18
+ # Run the Docker command
19
+ subprocess.run(docker_command, shell=True)
20
+ print("Docker container is running in the background.")
21
+
22
+ def initialize_db(self):
23
+ client = QdrantClient(
24
+ url=os.getenv('qdrant_url'),
25
+ api_key=os.getenv('qdrant_api'), timeout=20)
26
+ # client = QdrantClient(url="http://localhost:6333", timeout=1200, grpc_port=6333)
27
+
28
+ return client
29
+
30
+ def create_collection(self, client, collection_name, vector_size=4096, distance=models.Distance.COSINE):
31
+
32
+ if client.collection_exists(collection_name=collection_name):
33
+ print("{name} is exist!".format(name=collection_name))
34
+
35
+ else:
36
+ print("Name is not exist!")
37
+ client.create_collection(collection_name=collection_name,
38
+ vectors_config=models.VectorParams(size=vector_size,
39
+ distance=distance,
40
+ )
41
+ )
pdf_loader.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import uuid
4
+ import datetime
5
+ from qdrant_client import QdrantClient, models
6
+ from langchain_core.load import dumpd, dumps, load, loads
7
+ from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
8
+ from langchain.text_splitter import NLTKTextSplitter, RecursiveCharacterTextSplitter
9
+ from langchain_qdrant import Qdrant
10
+
11
+ class PDFLoader:
12
+
13
+ def __init__(self):
14
+ pass
15
+
16
+ def pdf_reader(self, path):
17
+ key = None # change it with your own loader key
18
+ endpoint = None # change it with your own loader endpoint
19
+ analysis_features = ["ocrHighResolution"]
20
+ # PDF Loader
21
+ AzurePDFLoader = AzureAIDocumentIntelligenceLoader(
22
+ api_endpoint=endpoint,
23
+ api_key=key,
24
+ file_path=path,
25
+ api_model="prebuilt-layout",
26
+ mode="page",
27
+ analysis_features=analysis_features
28
+ )
29
+ documents = AzurePDFLoader.load()
30
+ return documents
31
+
32
+ def save_raw_documents(self, path, name, documents):
33
+
34
+ log_file={"documents": dumpd(documents)}
35
+ log_file_name = os.path.join(path, name)
36
+
37
+ with open(log_file_name, 'w') as output_file:
38
+ print(json.dumps(log_file, indent=2), file=output_file)
39
+
40
+ def load_raw_documents(self, path, name):
41
+
42
+ log_file_name = os.path.join(path, name)
43
+
44
+ with open(log_file_name, 'rb') as output_file:
45
+ log_file= json.load(output_file)
46
+
47
+ documents = load(log_file["documents"])
48
+ return documents
49
+
50
+ def recursive_splitter(self, documents, chunk_size=1024, chunk_overlap=256):
51
+
52
+ # Splitter
53
+ mySplitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
54
+ chunk_overlap=chunk_overlap,
55
+ add_start_index=False)
56
+ chunks = mySplitter.split_documents(documents)
57
+ return chunks
58
+
59
+ def generate_vectors(self, chunks, embeddings, source_name):
60
+ vectors = []
61
+ metadatas = []
62
+ page_contents = []
63
+ for chunk in chunks:
64
+ page_contents.append(chunk.page_content)
65
+
66
+ vector = embeddings.embed_documents([chunk.page_content])
67
+ vectors.append(vector)
68
+
69
+ meta = chunk.metadata
70
+ meta["source"] = source_name
71
+ metadatas.append(meta)
72
+
73
+ return page_contents, vectors, metadatas
74
+
75
+ def save_to_database(self, chunks, embeddings, collection_name):
76
+
77
+ qdrant = Qdrant.from_documents(
78
+ chunks,
79
+ embeddings,
80
+ url=os.getenv('qdrant_url'),
81
+ api_key=os.getenv('qdrant_api'),
82
+ prefer_grpc=True,
83
+ collection_name=collection_name)
84
+
85
+ def load_from_database(self, embeddings, collection_name):
86
+
87
+ db = Qdrant.from_existing_collection(
88
+ embedding=embeddings,
89
+ url=os.getenv('qdrant_url'),
90
+ api_key=os.getenv('qdrant_api'),
91
+ collection_name=collection_name)
92
+
93
+ return db
94
+
95
+ def save_manuals(self, client, collection_name, car_id, model_year, vectors, metadatas, page_contents):
96
+
97
+ client.upsert(
98
+ collection_name=collection_name,
99
+ points=[
100
+ models.PointStruct(
101
+ id=uuid.uuid4().hex,
102
+ payload={"metadata":metadatas[idx],
103
+ "page_content": page_contents[idx],
104
+ "car_id": car_id,
105
+ "model_year": model_year,
106
+ "create_date": datetime.datetime.now().isoformat()},
107
+ vector=vector[0]
108
+ )
109
+ for idx, vector in enumerate(vectors)
110
+ ],
111
+ )
requirements.txt ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate==0.34.2
2
+ aiofiles==23.2.1
3
+ aiohappyeyeballs==2.4.0
4
+ aiohttp==3.10.5
5
+ aiosignal==1.3.1
6
+ annotated-types==0.7.0
7
+ anyio==4.4.0
8
+ asttokens==2.4.1
9
+ attrs==24.2.0
10
+ azure-ai-documentintelligence==1.0.0b4
11
+ azure-ai-ml==1.19.0
12
+ azure-common==1.1.28
13
+ azure-core==1.30.2
14
+ azure-identity==1.17.1
15
+ azure-mgmt-core==1.4.0
16
+ azure-storage-blob==12.22.0
17
+ azure-storage-file-datalake==12.16.0
18
+ azure-storage-file-share==12.17.0
19
+ backcall==0.2.0
20
+ beautifulsoup4==4.12.3
21
+ bleach==6.1.0
22
+ boto3==1.35.15
23
+ botocore==1.35.15
24
+ cachetools==5.5.0
25
+ certifi==2024.8.30
26
+ cffi==1.17.1
27
+ charset-normalizer==3.3.2
28
+ click==8.1.7
29
+ cohere==5.9.1
30
+ colorama==0.4.6
31
+ colorlog==6.8.2
32
+ comm==0.2.2
33
+ contourpy==1.3.0
34
+ cryptography==43.0.1
35
+ cycler==0.12.1
36
+ dataclasses-json==0.6.7
37
+ debugpy==1.8.5
38
+ decorator==5.1.1
39
+ defusedxml==0.7.1
40
+ distro==1.9.0
41
+ docopt==0.6.2
42
+ et-xmlfile==1.1.0
43
+ executing==2.1.0
44
+ fastapi==0.114.2
45
+ fastavro==1.9.7
46
+ fastjsonschema==2.20.0
47
+ ffmpy==0.4.0
48
+ filelock==3.13.1
49
+ fonttools==4.53.1
50
+ frozenlist==1.4.1
51
+ fsspec==2024.2.0
52
+ google-api-core==2.19.2
53
+ google-api-python-client==2.145.0
54
+ google-auth==2.34.0
55
+ google-auth-httplib2==0.2.0
56
+ googleapis-common-protos==1.65.0
57
+ gradio==4.44.0
58
+ gradio_client==1.3.0
59
+ greenlet==3.0.3
60
+ grpcio==1.66.1
61
+ grpcio-tools==1.66.1
62
+ h11==0.14.0
63
+ h2==4.1.0
64
+ hpack==4.0.0
65
+ httpcore==1.0.5
66
+ httplib2==0.22.0
67
+ httpx==0.27.2
68
+ httpx-sse==0.4.0
69
+ huggingface-hub==0.24.6
70
+ hyperframe==6.0.1
71
+ idna==3.8
72
+ importlib_resources==6.4.5
73
+ ipykernel==6.29.5
74
+ ipython==8.12.3
75
+ ipywidgets==8.1.5
76
+ isodate==0.6.1
77
+ jedi==0.19.1
78
+ Jinja2==3.1.4
79
+ jiter==0.5.0
80
+ jmespath==1.0.1
81
+ joblib==1.4.2
82
+ jsonpatch==1.33
83
+ jsonpointer==3.0.0
84
+ jsonschema==4.23.0
85
+ jsonschema-specifications==2023.12.1
86
+ jupyter_client==8.6.2
87
+ jupyter_core==5.7.2
88
+ jupyterlab_pygments==0.3.0
89
+ jupyterlab_widgets==3.0.13
90
+ kiwisolver==1.4.7
91
+ langchain==0.2.16
92
+ langchain-community==0.2.16
93
+ langchain-core==0.2.38
94
+ langchain-huggingface==0.0.3
95
+ langchain-openai==0.1.23
96
+ langchain-qdrant==0.1.3
97
+ langchain-text-splitters==0.2.4
98
+ langgraph==0.2.19
99
+ langgraph-checkpoint==1.0.9
100
+ langsmith==0.1.117
101
+ markdown-it-py==3.0.0
102
+ MarkupSafe==2.1.5
103
+ marshmallow==3.22.0
104
+ matplotlib==3.9.2
105
+ matplotlib-inline==0.1.7
106
+ mdurl==0.1.2
107
+ mistune==3.0.2
108
+ mpmath==1.3.0
109
+ msal==1.31.0
110
+ msal-extensions==1.2.0
111
+ msrest==0.7.1
112
+ multidict==6.1.0
113
+ mypy-extensions==1.0.0
114
+ nbclient==0.10.0
115
+ nbconvert==7.16.4
116
+ nbformat==5.10.4
117
+ nest-asyncio==1.6.0
118
+ networkx==3.2.1
119
+ numpy==1.26.3
120
+ oauthlib==3.2.2
121
+ openai==1.44.1
122
+ opencensus==0.11.4
123
+ opencensus-context==0.1.3
124
+ opencensus-ext-azure==1.1.13
125
+ opencensus-ext-logging==0.1.1
126
+ openpyxl==3.1.5
127
+ orjson==3.10.7
128
+ packaging==24.1
129
+ pandas==2.2.2
130
+ pandocfilters==1.5.1
131
+ parameterized==0.9.0
132
+ parso==0.8.4
133
+ pexpect==4.9.0
134
+ pickleshare==0.7.5
135
+ pillow==10.2.0
136
+ pipreqs==0.5.0
137
+ platformdirs==4.3.2
138
+ portalocker==2.10.1
139
+ prompt_toolkit==3.0.47
140
+ proto-plus==1.24.0
141
+ protobuf==5.28.0
142
+ psutil==6.0.0
143
+ ptyprocess==0.7.0
144
+ pure_eval==0.2.3
145
+ pyasn1==0.6.0
146
+ pyasn1_modules==0.4.0
147
+ pycparser==2.22
148
+ pydantic==2.9.1
149
+ pydantic_core==2.23.3
150
+ pydash==8.0.3
151
+ pydub==0.25.1
152
+ Pygments==2.18.0
153
+ PyJWT==2.9.0
154
+ pyparsing==3.1.4
155
+ python-dateutil==2.9.0.post0
156
+ python-multipart==0.0.9
157
+ pytz==2024.1
158
+ PyYAML==6.0.2
159
+ pyzmq==26.2.0
160
+ qdrant-client==1.11.1
161
+ referencing==0.35.1
162
+ regex==2024.7.24
163
+ requests==2.32.3
164
+ requests-mock==1.12.1
165
+ requests-oauthlib==2.0.0
166
+ rich==13.8.1
167
+ rpds-py==0.20.0
168
+ rsa==4.9
169
+ ruff==0.6.5
170
+ s3transfer==0.10.2
171
+ safetensors==0.4.5
172
+ scikit-learn==1.5.1
173
+ scipy==1.14.1
174
+ semantic-router==0.0.65
175
+ semantic-version==2.10.0
176
+ sentence-transformers==3.0.1
177
+ shellingham==1.5.4
178
+ six==1.16.0
179
+ sniffio==1.3.1
180
+ soupsieve==2.6
181
+ SQLAlchemy==2.0.34
182
+ stack-data==0.6.3
183
+ starlette==0.38.5
184
+ strictyaml==1.7.3
185
+ sympy==1.12
186
+ tenacity==8.5.0
187
+ threadpoolctl==3.5.0
188
+ tiktoken==0.7.0
189
+ tinycss2==1.3.0
190
+ tokenizers==0.19.1
191
+ tomlkit==0.12.0
192
+ tornado==6.4.1
193
+ tqdm==4.66.5
194
+ traitlets==5.14.3
195
+ transformers==4.44.2
196
+ triton==2.3.0
197
+ typer==0.12.5
198
+ types-requests==2.32.0.20240907
199
+ typing-inspect==0.9.0
200
+ typing_extensions==4.12.2
201
+ tzdata==2024.1
202
+ uritemplate==4.1.1
203
+ urllib3==2.2.2
204
+ uvicorn==0.30.6
205
+ v==1
206
+ wcwidth==0.2.13
207
+ webencodings==0.5.1
208
+ websockets==12.0
209
+ widgetsnbextension==4.0.13
210
+ yarg==0.1.9
211
+ yarl==1.11.1
wrappers.py ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import openai
3
+ from langchain_openai import AzureChatOpenAI
4
+ from langchain.prompts import ChatPromptTemplate, PromptTemplate
5
+ from qdrant_client.http import models as rest
6
+ from qdrant_client import QdrantClient, models
7
+ from langchain_core.pydantic_v1 import BaseModel, Field
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.chains import LLMChain
10
+ from langchain_community.utilities import GoogleSearchAPIWrapper
11
+ from langchain_core.tools import Tool
12
+ from typing_extensions import TypedDict
13
+ from typing import List
14
+ from langchain.schema import Document
15
+ from pprint import pprint
16
+ from langgraph.graph import END, StateGraph
17
+
18
+ from db_operations import DatabaseOperations
19
+ # from initialize_db import QdrantClientInitializer
20
+ from embedding_loader import *
21
+
22
+ class Wrappers:
23
+
24
+ def __init__(self, collection_name_manual, client, embeddings, LLM, db, CAR_ID, memory):
25
+ self.collection_name_manual = collection_name_manual
26
+ self.embeddings = embeddings
27
+ self.client = client
28
+ self.myLLM = LLM
29
+ self.db = db
30
+ self.CAR_ID = CAR_ID
31
+ self.memory = memory
32
+ # self.memory = ConversationBufferMemory(memory_key="history",
33
+ # input_key="question")
34
+ def translater(self):
35
+ template = """You are a Turkish-English translator. Translate the input to English considering vehicle/car domain terms.
36
+
37
+ Input: {question}
38
+
39
+ Answer: """
40
+
41
+ PROMPT = PromptTemplate.from_template(template) # -----------------> ChatPromptTemplate kullanmak daha sağlıklı
42
+
43
+ translate_chain = LLMChain(llm=self.myLLM, prompt=PROMPT)
44
+ # translate_chain = PROMPT | self.myLLM
45
+
46
+ return translate_chain
47
+
48
+ def retriever(self):
49
+
50
+ retriever = self.db.as_retriever(search_kwargs={'k': 4}, filter=rest.Filter(
51
+ must=[
52
+ models.FieldCondition(key="car_id", match=models.MatchValue(value=self.CAR_ID))
53
+ ]
54
+ ))
55
+
56
+ return retriever
57
+
58
+ def grade_documents(self):
59
+ class GradeDocuments(BaseModel):
60
+ """Binary score for relevance check on retrieved documents."""
61
+
62
+ binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
63
+
64
+ # LLM with function call
65
+ structured_llm_grader_docs = self.myLLM.with_structured_output(GradeDocuments)
66
+
67
+ # Prompt
68
+ system = """You are a grader assessing relevance of a retrieved document to a user question. \n
69
+ Consider the following when making your assessment: \n
70
+ - Does the document directly address the user's question? \n
71
+ - Does it provide information or context that is pertinent to the question? \n
72
+ - Does it discuss relevant risks, benefits, recommendations, or considerations related to the question? \n
73
+ If the document contains keyword(s) or semantic meaning related or partially related to the question, grade it as relevant. \n
74
+ Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
75
+
76
+ grade_prompt = ChatPromptTemplate.from_messages(
77
+ [
78
+ ("system", system),
79
+ ("human", "Retrieved document: \n\n {document} \n\n User question: {question}"),
80
+ ]
81
+ )
82
+
83
+ retrieval_grader_relevance = grade_prompt | structured_llm_grader_docs
84
+
85
+ return retrieval_grader_relevance
86
+
87
+ def lead_check(self):
88
+
89
+ class LeadCheck(BaseModel):
90
+ """Binary score for service relevance check on question."""
91
+
92
+ binary_score: str = Field(description="Services are relevant to the question, 'yes' or 'no'")
93
+
94
+ # LLM with function call
95
+ structured_llm_grader_service = self.myLLM.with_structured_output(LeadCheck)
96
+
97
+ # Prompt
98
+ system = """You are a grader assessing relevance of services to a user question. \n
99
+ If the provided services related or partially related to the question, grade it as relevant. \n
100
+ Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
101
+
102
+ lead_prompt = ChatPromptTemplate.from_messages(
103
+ [
104
+ ("system", system),
105
+ ("human", "Provided services: \n\n {hizmet_listesi} \n\n User question: {question}"),
106
+ ]
107
+ )
108
+
109
+ service_grader_relevance = lead_prompt | structured_llm_grader_service
110
+
111
+ return service_grader_relevance
112
+
113
+ def main_prompt(self):
114
+
115
+ prompt = ChatPromptTemplate.from_template(
116
+ """
117
+ You are an expert assistant named ARVI focused solely on car troubles and vehicle information.
118
+ Your goal is to provide accurate, helpful, and clear answers to any questions related to car issues, maintenance, repairs, specifications, and other vehicle-related topics.
119
+
120
+ You are also designed to respond politely and appropriately to basic courteous interactions. Here are the guidelines:
121
+
122
+ 1. Car Troubles and Vehicle Information:
123
+
124
+ - Always answer questions regarding car issues, diagnostics, repairs, maintenance, and vehicle specifications.
125
+ - Provide detailed and practical advice that can help users resolve their car troubles or understand more about their vehicles based on context.
126
+
127
+ 2. References:
128
+
129
+ - When answering a question, if you use specific information from the context, add the context's metadata (source and page) as references at the end of your response.
130
+ - Do not repeat same reference.
131
+ - Never include irrelevant context.
132
+
133
+ The first information you have is the relevant text that is automatically extracted from the manual or through the web search. \n
134
+ Context: {context} \n
135
+
136
+ History: {history} \n
137
+
138
+ Based on all the information provided, answer the following question briefly: \n
139
+ Question: {question} \n
140
+
141
+ Lead: {lead} \n
142
+ Do not use your prior knowledge! \n
143
+ If the question is too general, ask for specific information. \n
144
+ Answer: Answer in Turkish\n
145
+ References: 1: \n
146
+ 2: \n
147
+ ...
148
+ """
149
+ )
150
+
151
+ # Chain
152
+
153
+ # rag_chain = prompt | myLLM | StrOutputParser()
154
+ rag_chain =LLMChain(llm=self.myLLM, prompt=prompt, memory=self.memory)
155
+
156
+ return rag_chain
157
+
158
+ def hallucination_grader(self):
159
+ class GradeHallucinations(BaseModel):
160
+ """Binary score for hallucination present in generation answer."""
161
+
162
+ binary_score: str = Field(description="Don't consider calling external APIs for additional information. Answer is supported by the facts, 'yes' or 'no'.")
163
+
164
+ # LLM with function call
165
+ structured_llm_grader_hallucination = self.myLLM.with_structured_output(GradeHallucinations)
166
+
167
+ # Prompt
168
+ system = """You are a grader assessing whether an LLM generation is supported by a set of retrieved facts. \n
169
+ If the LLM generation is greetings sentences or say 'cannot answer the question", always consider it is a yes. \n
170
+ For others, restrict yourself to give a binary score, either 'yes' or 'no'. If the answer is supported or partially supported by the set of facts, consider it a yes. \n
171
+ Don't consider calling external APIs or prior knowledge for additional information as consistent with the facts."""
172
+
173
+ hallucination_prompt = ChatPromptTemplate.from_messages(
174
+ [
175
+ ("system", system),
176
+ ("human", "Set of facts: \n\n {documents} \n\n LLM generation: {generation}"),
177
+ ]
178
+ )
179
+
180
+ hallucination_grader = hallucination_prompt | structured_llm_grader_hallucination
181
+
182
+ return hallucination_grader
183
+
184
+ def answer_grader(self):
185
+ class GradeAnswer(BaseModel):
186
+ """Binary score to assess answer addresses question."""
187
+
188
+ binary_score: str = Field(description="Answer addresses the question, 'yes' or 'no'")
189
+
190
+ # LLM with function call
191
+ structured_llm_grader_answer = self.myLLM.with_structured_output(GradeAnswer)
192
+
193
+ # Prompt
194
+ system = """You are a grader assessing whether an answer addresses / resolves a question \n
195
+ Give a binary score 'yes' or 'no'. Yes' means that the answer resolves the question. \n
196
+ If the LLM generation is greetings sentences, always consider it is a yes.\n
197
+ If the LLM generation said that 'I cannot answer that question", consider it is a yes."""
198
+
199
+ answer_prompt = ChatPromptTemplate.from_messages(
200
+ [
201
+ ("system", system),
202
+ ("human", "User question: \n\n {question} \n\n LLM generation: {generation}"),
203
+ ]
204
+ )
205
+
206
+ answer_grader = answer_prompt | structured_llm_grader_answer
207
+
208
+ return answer_grader
209
+
210
+
211
+ def web_search(self):
212
+ os.environ["GOOGLE_CSE_ID"] = os.getenv('google_search_id')
213
+ os.environ["GOOGLE_API_KEY"] = os.getenv('google_search_api')
214
+
215
+ search = GoogleSearchAPIWrapper()
216
+
217
+ def top3_results(query):
218
+ return search.results(query, 3)
219
+
220
+ web_search_tool = Tool(
221
+ name="google_search",
222
+ description="Search Google for recent results.",
223
+ func=top3_results,
224
+ )
225
+
226
+ return web_search_tool
227
+
228
+
229
+ def lagchain_graph(self):
230
+
231
+ class GraphState(TypedDict):
232
+ """
233
+ Represents the state of our graph.
234
+
235
+ Attributes:
236
+ question: question
237
+ generation: LLM generation
238
+ web_search: whether to add search
239
+ documents: list of documents
240
+ """
241
+ question : str
242
+ generation : str
243
+ web_search : str
244
+ documents : List[str]
245
+ iter_halucination: int
246
+ lead: str
247
+
248
+ ### Nodes
249
+
250
+ def retrieve(state):
251
+ """
252
+ Retrieve documents from vectorstore
253
+
254
+ Args:
255
+ state (dict): The current graph state
256
+
257
+ Returns:
258
+ state (dict): New key added to state, documents, that contains retrieved documents
259
+ """
260
+ print("---RETRIEVE from Vector Store DB---")
261
+ question = state["question"]
262
+ # Retrieval
263
+ documents = self.retriever().invoke(question)
264
+ return {"documents": documents, "question": question}
265
+
266
+ def generate(state):
267
+ """
268
+ Generate answer using RAG on retrieved documents
269
+
270
+ Args:
271
+ state (dict): The current graph state
272
+
273
+ Returns:
274
+ state (dict): New key added to state, generation, that contains LLM generation
275
+ """
276
+ print("---GENERATE Answer---")
277
+ question = state["question"]
278
+ documents = state["documents"]
279
+ lead = state["lead"]
280
+
281
+ # RAG generation
282
+ generation = self.main_prompt().invoke({"context": documents, "question": question, "history": self.memory, "lead": lead})
283
+ return {"documents": documents, "question": question, "generation": generation}
284
+
285
+ def history_router(state):
286
+
287
+ question = state["question"]
288
+ history_log = DatabaseOperations.question_history_search(client=self.client,
289
+ collection_name=self.collection_name_manual,
290
+ car_id=self.CAR_ID,
291
+ question=question, embeddings=self.embeddings)
292
+
293
+ if len(history_log) > 0:
294
+ print("---ANSWER FROM HISTORY---")
295
+ return 'question history'
296
+
297
+ else:
298
+ print("---ANSWER FROM MANUAL---")
299
+ return 'user manual'
300
+
301
+ def generate_from_history(state):
302
+ # sohbet devamlılığı için history'den konuşmayı memory'e ekle
303
+ question = state["question"]
304
+ history_log = DatabaseOperations.question_history_search(client=self.client,
305
+ collection_name=self.collection_name_manual,
306
+ car_id=self.CAR_ID,
307
+ question=question, embeddings=self.embeddings)
308
+ return {"generation": {"text": history_log[0].payload["answer"]}}
309
+
310
+ def grade_documents(state):
311
+ """
312
+ Determines whether the retrieved documents are relevant to the question
313
+ If any document is not relevant, we will set a flag to run web search
314
+
315
+ Args:
316
+ state (dict): The current graph state
317
+
318
+ Returns:
319
+ state (dict): Filtered out irrelevant documents and updated web_search state
320
+ """
321
+
322
+ print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
323
+ question = state["question"]
324
+ documents = state["documents"]
325
+ # Score each doc
326
+ filtered_docs = []
327
+ web_search = "No"
328
+ for d in documents:
329
+ score = self.grade_documents().invoke({"question": question, "document": d.page_content})
330
+ grade = score.binary_score
331
+ # Document relevant
332
+ if grade.lower() == "yes":
333
+ print("---GRADE: DOCUMENT RELEVANT---")
334
+ filtered_docs.append(d)
335
+ # Document not relevant
336
+ else:
337
+ print("---GRADE: DOCUMENT NOT RELEVANT---")
338
+ # We do not include the document in filtered_docs
339
+ # We set a flag to indicate that we want to run web search
340
+ # web_search = "Yes"
341
+ continue
342
+ if filtered_docs == []:
343
+ web_search = "Yes"
344
+
345
+ return {"documents": filtered_docs, "question": question, "web_search": web_search}
346
+
347
+ def grade_service(state):
348
+ hizmet_listesi = hizmet_listesi = {"Bakım": """Check-Up, Periyodik Bakım, Aks Değişimi, Amortisör Değişimi, Amortisör Takozu Değişimi, Baskı Balata Değişimi, Benzin Filtresi Değişimi,
349
+ Debriyaj Balatası Değişimi, Direksiyon Kutusu Değişimi, Dizel Araç Bakımı, Egzoz Muayenesi, Fren Kaliperi Değişimi, El Freni Teli Değişimi,
350
+ Fren Balatası Değişimi, Fren Disk Değişimi, Hava Filtresi Değişimi, Helezon Yay Değişimi, Kampana Fren Balatası Değişimi,
351
+ Kızdırma Bujisi Değişimi, Rot Başı Değişimi, Rot Kolu Değişimi, Rotil Değişimi, Silecek Değişimi, Süspansiyon, Triger Kayışı Değişimi,
352
+ Triger Zinciri Değişimi, V Kayışı Değişimi, Yağ Filtresi Değişimi, Yakıt Filtresi Değişimi,""",
353
+ "Yağ ve Sıvılar": """Şanzıman Yağı Değişimi, Dizel Araçlarda Yağ Değişimi, Yağ Değişimi, Fren Hidrolik Değişimi, Antifriz Değişimi,""",
354
+ "Akü": """Akü Şarj Etme, Akü Değişimi""",
355
+ "Klima": """Oto Klima Kompresörü Tamiri, Oto Klima Tamiri, Araç Klima Temizliği, Araç Klima Bakteri Temizliği, Klima Gazı Dolumu, Klima Dezenfeksiyonu, Polen Filtresi Değişimi""",
356
+ "Elektrik": """Servis Uyarı Lambası Sıfırlama,Buji Kablosu Değişimi, Arıza Tespit, Göstergelerin Kontrolü, Far Ayarı ve Ampul Değişimi, Buji Değişimi, Sigorta Değişimi""",
357
+ "Lastik/ Jant": """Lastik Jant Satış, Lastik Değişimi, Balans Ayarı, Rot Ayarı, Rotasyon, Lastik Tamiri, Hava Kontrolü, Nitrojen Dolumu, Supap Değişimi, Lastik Saklama (Lastik Oteli), Jant Sökme Takma,""",
358
+ "Diğer": """Cam Tamiri""",
359
+ "Hibrit Araçlar": "Hibrit Araç Aküsü"}
360
+
361
+ print("---CHECK SERVICE RELEVANCE TO QUESTION---")
362
+ question = state["question"]
363
+ score = self.lead_check().invoke({"hizmet_listesi": hizmet_listesi, "question": question})
364
+ grade = score.binary_score
365
+ lead = 'Always use "XXX Servisi" only instead of "Yetkili Servis" or "Yetkili Bayi".'
366
+
367
+ # Document relevant
368
+ if grade.lower() == "yes":
369
+ print("---GRADE: SERVICE RELEVANT---")
370
+ lead = 'Always use "Otobakım Servisi" only instead of "Toyota Servisi", "Yetkili Servis" or "Toyota Bayisi". At the end of the answer, offer the user to visit Otobakım shops for quick and affordable solutions, starting with the phrase: "If you are not sure how to proceed.".'
371
+ # Document not relevant
372
+ else:
373
+ print("---GRADE: SERVICE NOT RELEVANT---")
374
+
375
+ return {"lead": lead}
376
+
377
+ def web_search(state):
378
+ """
379
+ Web search based based on the question
380
+
381
+ Args:
382
+ state (dict): The current graph state
383
+
384
+ Returns:
385
+ state (dict): Appended web results to documents
386
+ """
387
+
388
+ print("---WEB SEARCH. Append to vector store db---")
389
+ question = state["question"]
390
+ documents = state["documents"]
391
+ translated_question = self.translater().invoke({"question": question})["text"]
392
+
393
+ # Web search
394
+ docs = self.web_search().invoke({"query": translated_question})
395
+ # web_results = [d["snippet"] for d in docs]
396
+ # source = [d["link"] for d in docs]
397
+ # web_results = Document(page_content = web_results, metadata={'source': source})
398
+ web_results = [Document(page_content=d["snippet"], metadata={'source': d["link"]}) for d in docs]
399
+ # if documents is not None:
400
+ # documents.append(web_results)
401
+ # else:
402
+ # documents = [web_results]
403
+ if documents == []:
404
+ documents = web_results
405
+ print(documents)
406
+ return {"documents": documents, "question": question}
407
+
408
+
409
+ def decide_to_generate(state):
410
+ """
411
+ Determines whether to generate an answer, or add web search
412
+
413
+ Args:
414
+ state (dict): The current graph state
415
+
416
+ Returns:
417
+ str: Binary decision for next node to call
418
+ """
419
+
420
+ print("---ASSESS GRADED DOCUMENTS---")
421
+ question = state["question"]
422
+ web_search = state["web_search"]
423
+ filtered_documents = state["documents"]
424
+
425
+ if web_search == "Yes":
426
+ # All documents have been filtered check_relevance
427
+ # We will re-generate a new query
428
+ print("---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, INCLUDE WEB SEARCH---")
429
+ return "websearch"
430
+ else:
431
+ # We have relevant documents, so generate answer
432
+ print("---DECISION: GENERATE---")
433
+ return "generate"
434
+
435
+ def hallucination_router(state):
436
+ print("---QUESTION CHANGING---")
437
+ question = 'You are hallucinating! Please change your answer by sticking to the context.'
438
+ iter_halucination = state["iter_halucination"]
439
+ iter_halucination += 1
440
+ return {'question': question, "iter_halucination": iter_halucination}
441
+
442
+ def grade_generation_v_documents_and_question(state):
443
+ """
444
+ Determines whether the generation is grounded in the document and answers question
445
+
446
+ Args:
447
+ state (dict): The current graph state
448
+
449
+ Returns:
450
+ str: Decision for next node to call
451
+ """
452
+ print("---CHECK HALLUCINATIONS---")
453
+ question = state["question"]
454
+ documents = state["documents"]
455
+ generation = state["generation"]
456
+ iter_halucination = state["iter_halucination"]
457
+ # print("Generation:", generation)
458
+ score = self.hallucination_grader().invoke({"documents": documents, "generation": generation})
459
+ grade = score.binary_score
460
+ # Check hallucination
461
+ if grade == "yes":
462
+ print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
463
+ # Check question-answering
464
+ print("---GRADE GENERATION vs QUESTION---")
465
+ score = self.answer_grader().invoke({"question": question,"generation": generation})
466
+ grade = score.binary_score
467
+ if grade == "yes":
468
+ print("---DECISION: GENERATION ADDRESSES QUESTION---")
469
+ return "useful"
470
+ else:
471
+ print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
472
+ return "not useful"
473
+ else:
474
+ if iter_halucination < 2:
475
+ pprint("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
476
+ return "not supported"
477
+ else:
478
+ return "not useful"
479
+
480
+ def lead_check(answer):
481
+
482
+ if "otobakım" in answer.lower():
483
+ return 1
484
+ else:
485
+ return 0
486
+
487
+
488
+ def print_result(question, result):
489
+ output_text = f"""### Question:
490
+ {question}
491
+ ### Answer:
492
+ {result}
493
+ """
494
+ return(output_text)
495
+
496
+ workflow = StateGraph(GraphState)
497
+
498
+ # Define the nodes
499
+ workflow.add_node("websearch", web_search) # web search # key: action to 0do
500
+ workflow.add_node("retrieve", retrieve) # retrieve
501
+ workflow.add_node("grade_documents", grade_documents) # grade documents
502
+ workflow.add_node("generate", generate) # generatae
503
+ workflow.add_node("hallucination_router", hallucination_router)
504
+ workflow.add_node("grade_service", grade_service)
505
+
506
+ # workflow.add_node("generate_from_history", generate_from_history)
507
+
508
+ workflow.add_edge("grade_service", "retrieve")
509
+ workflow.add_edge("websearch", "generate") #start -> end of node
510
+ workflow.add_edge("retrieve", "grade_documents")
511
+ workflow.add_edge("hallucination_router", "generate")
512
+
513
+
514
+ # workflow.add_edge("generate_from_history", END)
515
+
516
+ # Build graph
517
+ # workflow.set_conditional_entry_point(
518
+ # history_router, # defined function
519
+ # {
520
+ # "question history": "generate_from_history", #returns of the function
521
+ # "user manual": "grade_service", #returns of the function
522
+ # },
523
+ # )
524
+ workflow.set_entry_point(
525
+ "grade_service")
526
+
527
+ workflow.add_conditional_edges(
528
+ "grade_documents", # start: node
529
+ decide_to_generate, # defined function
530
+ {
531
+ "websearch": "websearch", #returns of the function
532
+ "generate": "generate", #returns of the function
533
+ },
534
+ )
535
+
536
+ workflow.add_conditional_edges(
537
+ "generate", # start: node
538
+ grade_generation_v_documents_and_question, # defined function
539
+ {
540
+ "not supported": "hallucination_router", #returns of the function
541
+ "not useful": END, #returns of the function
542
+ "useful": END, #returns of the function
543
+ },
544
+ )
545
+
546
+ # Compile
547
+ app = workflow.compile()
548
+
549
+ return app