File size: 21,476 Bytes
b3a65d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import time
from math import ceil
import warnings
import torch
import pytorch_lightning as pl
import torch.distributed as dist
from torchaudio import load
from torch_ema import ExponentialMovingAverage
from librosa import resample
from sgmse import sampling
from sgmse.sdes import SDERegistry
from sgmse.backbones import BackboneRegistry
from sgmse.util.inference import evaluate_model
from sgmse.util.other import pad_spec, si_sdr
from pesq import pesq
from pystoi import stoi
from torch_pesq import PesqLoss
class ScoreModel(pl.LightningModule):
@staticmethod
def add_argparse_args(parser):
parser.add_argument("--lr", type=float, default=1e-4, help="The learning rate (1e-4 by default)")
parser.add_argument("--ema_decay", type=float, default=0.999, help="The parameter EMA decay constant (0.999 by default)")
parser.add_argument("--t_eps", type=float, default=0.03, help="The minimum process time (0.03 by default)")
parser.add_argument("--num_eval_files", type=int, default=20, help="Number of files for speech enhancement performance evaluation during training. Pass 0 to turn off (no checkpoints based on evaluation metrics will be generated).")
parser.add_argument("--loss_type", type=str, default="score_matching", help="The type of loss function to use.")
parser.add_argument("--loss_weighting", type=str, default="sigma^2", help="The weighting of the loss function.")
parser.add_argument("--network_scaling", type=str, default=None, help="The type of loss scaling to use.")
parser.add_argument("--c_in", type=str, default="1", help="The input scaling for x.")
parser.add_argument("--c_out", type=str, default="1", help="The output scaling.")
parser.add_argument("--c_skip", type=str, default="0", help="The skip connection scaling.")
parser.add_argument("--sigma_data", type=float, default=0.1, help="The data standard deviation.")
parser.add_argument("--l1_weight", type=float, default=0.001, help="The balance between the time-frequency and time-domain losses.")
parser.add_argument("--pesq_weight", type=float, default=0.0, help="The balance between the time-frequency and time-domain losses.")
parser.add_argument("--sr", type=int, default=16000, help="The sample rate of the audio files.")
return parser
def __init__(
self, backbone, sde, lr=1e-4, ema_decay=0.999, t_eps=0.03, num_eval_files=20, loss_type='score_matching',
loss_weighting='sigma^2', network_scaling=None, c_in='1', c_out='1', c_skip='0', sigma_data=0.1,
l1_weight=0.001, pesq_weight=0.0, sr=16000, data_module_cls=None, **kwargs
):
"""
Create a new ScoreModel.
Args:
backbone: Backbone DNN that serves as a score-based model.
sde: The SDE that defines the diffusion process.
lr: The learning rate of the optimizer. (1e-4 by default).
ema_decay: The decay constant of the parameter EMA (0.999 by default).
t_eps: The minimum time to practically run for to avoid issues very close to zero (1e-5 by default).
loss_type: The type of loss to use (wrt. noise z/std). Options are 'mse' (default), 'mae'
"""
super().__init__()
# Initialize Backbone DNN
self.backbone = backbone
dnn_cls = BackboneRegistry.get_by_name(backbone)
self.dnn = dnn_cls(**kwargs)
# Initialize SDE
sde_cls = SDERegistry.get_by_name(sde)
self.sde = sde_cls(**kwargs)
# Store hyperparams and save them
self.lr = lr
self.ema_decay = ema_decay
self.ema = ExponentialMovingAverage(self.parameters(), decay=self.ema_decay)
self._error_loading_ema = False
self.t_eps = t_eps
self.loss_type = loss_type
self.loss_weighting = loss_weighting
self.l1_weight = l1_weight
self.pesq_weight = pesq_weight
self.network_scaling = network_scaling
self.c_in = c_in
self.c_out = c_out
self.c_skip = c_skip
self.sigma_data = sigma_data
self.num_eval_files = num_eval_files
self.sr = sr
# Initialize PESQ loss if pesq_weight > 0.0
if pesq_weight > 0.0:
self.pesq_loss = PesqLoss(1.0, sample_rate=sr).eval()
for param in self.pesq_loss.parameters():
param.requires_grad = False
self.save_hyperparameters(ignore=['no_wandb'])
self.data_module = data_module_cls(**kwargs, gpu=kwargs.get('gpus', 0) > 0)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer
def optimizer_step(self, *args, **kwargs):
# Method overridden so that the EMA params are updated after each optimizer step
super().optimizer_step(*args, **kwargs)
self.ema.update(self.dnn.parameters())
# on_load_checkpoint / on_save_checkpoint needed for EMA storing/loading
def on_load_checkpoint(self, checkpoint):
ema = checkpoint.get('ema', None)
if ema is not None:
self.ema.load_state_dict(checkpoint['ema'])
else:
self._error_loading_ema = True
warnings.warn("EMA state_dict not found in checkpoint!")
def on_save_checkpoint(self, checkpoint):
checkpoint['ema'] = self.ema.state_dict()
def train(self, mode, no_ema=False):
res = super().train(mode) # call the standard `train` method with the given mode
if not self._error_loading_ema:
if mode == False and not no_ema:
# eval
self.ema.store(self.dnn.parameters()) # store current params in EMA
self.ema.copy_to(self.dnn.parameters()) # copy EMA parameters over current params for evaluation
else:
# train
if self.ema.collected_params is not None:
self.ema.restore(self.dnn.parameters()) # restore the EMA weights (if stored)
return res
def eval(self, no_ema=False):
return self.train(False, no_ema=no_ema)
def _loss(self, forward_out, x_t, z, t, mean, x):
"""
Different loss functions can be used to train the score model, see the paper:
Julius Richter, Danilo de Oliveira, and Timo Gerkmann
"Investigating Training Objectives for Generative Speech Enhancement"
https://arxiv.org/abs/2409.10753
"""
sigma = self.sde._std(t)[:, None, None, None]
if self.loss_type == "score_matching":
score = forward_out
if self.loss_weighting == "sigma^2":
losses = torch.square(torch.abs(score * sigma + z)) # Eq. (7)
else:
raise ValueError("Invalid loss weighting for loss_type=score_matching: {}".format(self.loss_weighting))
# Sum over spatial dimensions and channels and mean over batch
loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1))
elif self.loss_type == "denoiser":
score = forward_out
D = score * sigma.pow(2) + x_t # equivalent to Eq. (10)
losses = torch.square(torch.abs(D - mean)) # Eq. (8)
if self.loss_weighting == "1":
losses = losses
elif self.loss_weighting == "sigma^2":
losses = losses * sigma**2
elif self.loss_weighting == "edm":
losses = ((sigma**2 + self.sigma_data**2)/((sigma*self.sigma_data)**2))[:, None, None, None] * losses
else:
raise ValueError("Invalid loss weighting for loss_type=denoiser: {}".format(self.loss_weighting))
# Sum over spatial dimensions and channels and mean over batch
loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1))
elif self.loss_type == "data_prediction":
x_hat = forward_out
B, C, F, T = x.shape
# losses in the time-frequency domain (tf)
losses_tf = (1/(F*T))*torch.square(torch.abs(x_hat - x))
losses_tf = torch.mean(0.5*torch.sum(losses_tf.reshape(losses_tf.shape[0], -1), dim=-1))
# losses in the time domain (td)
target_len = (self.data_module.num_frames - 1) * self.data_module.hop_length
x_hat_td = self.to_audio(x_hat.squeeze(), target_len)
x_td = self.to_audio(x.squeeze(), target_len)
losses_l1 = (1 / target_len) * torch.abs(x_hat_td - x_td)
losses_l1 = torch.mean(0.5*torch.sum(losses_l1.reshape(losses_l1.shape[0], -1), dim=-1))
# losses using PESQ
if self.pesq_weight > 0.0:
losses_pesq = self.pesq_loss(x_td, x_hat_td)
losses_pesq = torch.mean(losses_pesq)
# combine the losses
loss = losses_tf + self.l1_weight * losses_l1 + self.pesq_weight * losses_pesq
else:
loss = losses_tf + self.l1_weight * losses_l1
else:
raise ValueError("Invalid loss type: {}".format(self.loss_type))
return loss
def _step(self, batch, batch_idx):
x, y = batch
t = torch.rand(x.shape[0], device=x.device) * (self.sde.T - self.t_eps) + self.t_eps
mean, std = self.sde.marginal_prob(x, y, t)
z = torch.randn_like(x) # i.i.d. normal distributed with var=0.5
sigma = std[:, None, None, None]
x_t = mean + sigma * z
forward_out = self(x_t, y, t)
loss = self._loss(forward_out, x_t, z, t, mean, x)
return loss
def training_step(self, batch, batch_idx):
loss = self._step(batch, batch_idx)
self.log('train_loss', loss, on_step=True, on_epoch=True, sync_dist=True, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
# Evaluate speech enhancement performance
if batch_idx == 0 and self.num_eval_files != 0:
rank = dist.get_rank()
world_size = dist.get_world_size()
# Split the evaluation files among the GPUs
eval_files_per_gpu = self.num_eval_files // world_size
clean_files = self.data_module.valid_set.clean_files[:self.num_eval_files]
noisy_files = self.data_module.valid_set.noisy_files[:self.num_eval_files]
# Select the files for this GPU
if rank == world_size - 1:
clean_files = clean_files[rank*eval_files_per_gpu:]
noisy_files = noisy_files[rank*eval_files_per_gpu:]
else:
clean_files = clean_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu]
noisy_files = noisy_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu]
# Evaluate the performance of the model
pesq_sum = 0; si_sdr_sum = 0; estoi_sum = 0;
for (clean_file, noisy_file) in zip(clean_files, noisy_files):
# Load the clean and noisy speech
x, sr_x = load(clean_file)
x = x.squeeze().numpy()
y, sr_y = load(noisy_file)
assert sr_x == sr_y, "Sample rates of clean and noisy files do not match!"
# Resample if necessary
if sr_x != 16000:
x_16k = resample(x, orig_sr=sr_x, target_sr=16000).squeeze()
else:
x_16k = x
# Enhance the noisy speech
x_hat = self.enhance(y, N=self.sde.N)
if self.sr != 16000:
x_hat_16k = resample(x_hat, orig_sr=self.sr, target_sr=16000).squeeze()
else:
x_hat_16k = x_hat
pesq_sum += pesq(16000, x_16k, x_hat_16k, 'wb')
si_sdr_sum += si_sdr(x, x_hat)
estoi_sum += stoi(x, x_hat, self.sr, extended=True)
pesq_avg = pesq_sum / len(clean_files)
si_sdr_avg = si_sdr_sum / len(clean_files)
estoi_avg = estoi_sum / len(clean_files)
self.log('pesq', pesq_avg, on_step=False, on_epoch=True, sync_dist=True)
self.log('si_sdr', si_sdr_avg, on_step=False, on_epoch=True, sync_dist=True)
self.log('estoi', estoi_avg, on_step=False, on_epoch=True, sync_dist=True)
loss = self._step(batch, batch_idx)
self.log('valid_loss', loss, on_step=False, on_epoch=True, sync_dist=True)
return loss
def forward(self, x_t, y, t):
"""
The model forward pass. In [1] and [2], the model estimates the score function. In [3], the model estimates
either the score function or the target data for the Schrödinger bridge (loss_type='data_prediction').
[1] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and Timo Gerkmann
"Speech Enhancement and Dereverberation with Diffusion-Based Generative Models"
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023.
[2] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, and Timo Gerkmann
"EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation"
ISCA Interspecch, Kos, Greece, Sept. 2024.
[3] Julius Richter, Danilo de Oliveira, and Timo Gerkmann
"Investigating Training Objectives for Generative Speech Enhancement"
https://arxiv.org/abs/2409.10753
"""
# In [3], we use new code with backbone='ncsnpp_v2':
if self.backbone == "ncsnpp_v2":
F = self.dnn(self._c_in(t) * x_t, self._c_in(t) * y, t)
# Scaling the network output, see below Eq. (7) in the paper
if self.network_scaling == "1/sigma":
std = self.sde._std(t)
F = F / std[:, None, None, None]
elif self.network_scaling == "1/t":
F = F / t[:, None, None, None]
# The loss type determines the output of the model
if self.loss_type == "score_matching":
score = self._c_skip(t) * x_t + self._c_out(t) * F
return score
elif self.loss_type == "denoiser":
sigmas = self.sde._std(t)[:, None, None, None]
score = (F - x_t) / sigmas.pow(2)
return score
elif self.loss_type == 'data_prediction':
x_hat = self._c_skip(t) * x_t + self._c_out(t) * F
return x_hat
# In [1] and [2], we use the old code:
else:
dnn_input = torch.cat([x_t, y], dim=1)
score = -self.dnn(dnn_input, t)
return score
def _c_in(self, t):
if self.c_in == "1":
return 1.0
elif self.c_in == "edm":
sigma = self.sde._std(t)
return (1.0 / torch.sqrt(sigma**2 + self.sigma_data**2))[:, None, None, None]
else:
raise ValueError("Invalid c_in type: {}".format(self.c_in))
def _c_out(self, t):
if self.c_out == "1":
return 1.0
elif self.c_out == "sigma":
return self.sde._std(t)[:, None, None, None]
elif self.c_out == "1/sigma":
return 1.0 / self.sde._std(t)[:, None, None, None]
elif self.c_out == "edm":
sigma = self.sde._std(t)
return ((sigma * self.sigma_data) / torch.sqrt(self.sigma_data**2 + sigma**2))[:, None, None, None]
else:
raise ValueError("Invalid c_out type: {}".format(self.c_out))
def _c_skip(self, t):
if self.c_skip == "0":
return 0.0
elif self.c_skip == "edm":
sigma = self.sde._std(t)
return (self.sigma_data**2 / (sigma**2 + self.sigma_data**2))[:, None, None, None]
else:
raise ValueError("Invalid c_skip type: {}".format(self.c_skip))
def to(self, *args, **kwargs):
"""Override PyTorch .to() to also transfer the EMA of the model weights"""
self.ema.to(*args, **kwargs)
return super().to(*args, **kwargs)
def get_pc_sampler(self, predictor_name, corrector_name, y, N=None, minibatch=None, **kwargs):
N = self.sde.N if N is None else N
sde = self.sde.copy()
sde.N = N
kwargs = {"eps": self.t_eps, **kwargs}
if minibatch is None:
return sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y, **kwargs)
else:
M = y.shape[0]
def batched_sampling_fn():
samples, ns = [], []
for i in range(int(ceil(M / minibatch))):
y_mini = y[i*minibatch:(i+1)*minibatch]
sampler = sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y_mini, **kwargs)
sample, n = sampler()
samples.append(sample)
ns.append(n)
samples = torch.cat(samples, dim=0)
return samples, ns
return batched_sampling_fn
def get_ode_sampler(self, y, N=None, minibatch=None, **kwargs):
N = self.sde.N if N is None else N
sde = self.sde.copy()
sde.N = N
kwargs = {"eps": self.t_eps, **kwargs}
if minibatch is None:
return sampling.get_ode_sampler(sde, self, y=y, **kwargs)
else:
M = y.shape[0]
def batched_sampling_fn():
samples, ns = [], []
for i in range(int(ceil(M / minibatch))):
y_mini = y[i*minibatch:(i+1)*minibatch]
sampler = sampling.get_ode_sampler(sde, self, y=y_mini, **kwargs)
sample, n = sampler()
samples.append(sample)
ns.append(n)
samples = torch.cat(samples, dim=0)
return sample, ns
return batched_sampling_fn
def get_sb_sampler(self, sde, y, sampler_type="ode", N=None, **kwargs):
N = sde.N if N is None else N
sde = self.sde.copy()
sde.N = N if N is not None else sde.N
return sampling.get_sb_sampler(sde, self, y=y, sampler_type=sampler_type, **kwargs)
def train_dataloader(self):
return self.data_module.train_dataloader()
def val_dataloader(self):
return self.data_module.val_dataloader()
def test_dataloader(self):
return self.data_module.test_dataloader()
def setup(self, stage=None):
return self.data_module.setup(stage=stage)
def to_audio(self, spec, length=None):
return self._istft(self._backward_transform(spec), length)
def _forward_transform(self, spec):
return self.data_module.spec_fwd(spec)
def _backward_transform(self, spec):
return self.data_module.spec_back(spec)
def _stft(self, sig):
return self.data_module.stft(sig)
def _istft(self, spec, length=None):
return self.data_module.istft(spec, length)
def enhance(self, y, sampler_type="pc", predictor="reverse_diffusion",
corrector="ald", N=30, corrector_steps=1, snr=0.5, timeit=False,
**kwargs
):
"""
One-call speech enhancement of noisy speech `y`, for convenience.
"""
start = time.time()
T_orig = y.size(1)
norm_factor = y.abs().max().item()
y = y / norm_factor
Y = torch.unsqueeze(self._forward_transform(self._stft(y.cuda())), 0)
Y = pad_spec(Y)
# SGMSE sampling with OUVE SDE
if self.sde.__class__.__name__ == 'OUVESDE':
if self.sde.sampler_type == "pc":
sampler = self.get_pc_sampler(predictor, corrector, Y.cuda(), N=N,
corrector_steps=corrector_steps, snr=snr, intermediate=False,
**kwargs)
elif self.sde.sampler_type == "ode":
sampler = self.get_ode_sampler(Y.cuda(), N=N, **kwargs)
else:
raise ValueError("Invalid sampler type for SGMSE sampling: {}".format(sampler_type))
# Schrödinger bridge sampling with VE SDE
elif self.sde.__class__.__name__ == 'SBVESDE':
sampler = self.get_sb_sampler(sde=self.sde, y=Y.cuda(), sampler_type=self.sde.sampler_type)
else:
raise ValueError("Invalid SDE type for speech enhancement: {}".format(self.sde.__class__.__name__))
sample, nfe = sampler()
x_hat = self.to_audio(sample.squeeze(), T_orig)
x_hat = x_hat * norm_factor
x_hat = x_hat.squeeze().cpu().numpy()
end = time.time()
if timeit:
rtf = (end-start)/(len(x_hat)/self.sr)
return x_hat, nfe, rtf
else:
return x_hat
|