File size: 21,476 Bytes
b3a65d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import time
from math import ceil
import warnings

import torch
import pytorch_lightning as pl
import torch.distributed as dist
from torchaudio import load
from torch_ema import ExponentialMovingAverage
from librosa import resample

from sgmse import sampling
from sgmse.sdes import SDERegistry
from sgmse.backbones import BackboneRegistry
from sgmse.util.inference import evaluate_model
from sgmse.util.other import pad_spec, si_sdr
from pesq import pesq
from pystoi import stoi
from torch_pesq import PesqLoss


class ScoreModel(pl.LightningModule):
    @staticmethod
    def add_argparse_args(parser):
        parser.add_argument("--lr", type=float, default=1e-4, help="The learning rate (1e-4 by default)")
        parser.add_argument("--ema_decay", type=float, default=0.999, help="The parameter EMA decay constant (0.999 by default)")
        parser.add_argument("--t_eps", type=float, default=0.03, help="The minimum process time (0.03 by default)")
        parser.add_argument("--num_eval_files", type=int, default=20, help="Number of files for speech enhancement performance evaluation during training. Pass 0 to turn off (no checkpoints based on evaluation metrics will be generated).")
        parser.add_argument("--loss_type", type=str, default="score_matching", help="The type of loss function to use.")
        parser.add_argument("--loss_weighting", type=str, default="sigma^2", help="The weighting of the loss function.")
        parser.add_argument("--network_scaling", type=str, default=None, help="The type of loss scaling to use.")
        parser.add_argument("--c_in", type=str, default="1", help="The input scaling for x.")
        parser.add_argument("--c_out", type=str, default="1", help="The output scaling.")
        parser.add_argument("--c_skip", type=str, default="0", help="The skip connection scaling.")
        parser.add_argument("--sigma_data", type=float, default=0.1, help="The data standard deviation.")
        parser.add_argument("--l1_weight", type=float, default=0.001, help="The balance between the time-frequency and time-domain losses.")
        parser.add_argument("--pesq_weight", type=float, default=0.0, help="The balance between the time-frequency and time-domain losses.")
        parser.add_argument("--sr", type=int, default=16000, help="The sample rate of the audio files.")
        return parser

    def __init__(

        self, backbone, sde, lr=1e-4, ema_decay=0.999, t_eps=0.03, num_eval_files=20, loss_type='score_matching', 

        loss_weighting='sigma^2', network_scaling=None, c_in='1', c_out='1', c_skip='0', sigma_data=0.1, 

        l1_weight=0.001, pesq_weight=0.0, sr=16000, data_module_cls=None, **kwargs

    ):
        """

        Create a new ScoreModel.



        Args:

            backbone: Backbone DNN that serves as a score-based model.

            sde: The SDE that defines the diffusion process.

            lr: The learning rate of the optimizer. (1e-4 by default).

            ema_decay: The decay constant of the parameter EMA (0.999 by default).

            t_eps: The minimum time to practically run for to avoid issues very close to zero (1e-5 by default).

            loss_type: The type of loss to use (wrt. noise z/std). Options are 'mse' (default), 'mae'

        """
        super().__init__()
        # Initialize Backbone DNN
        self.backbone = backbone
        dnn_cls = BackboneRegistry.get_by_name(backbone)
        self.dnn = dnn_cls(**kwargs)
        # Initialize SDE
        sde_cls = SDERegistry.get_by_name(sde)
        self.sde = sde_cls(**kwargs)
        # Store hyperparams and save them
        self.lr = lr
        self.ema_decay = ema_decay
        self.ema = ExponentialMovingAverage(self.parameters(), decay=self.ema_decay)
        self._error_loading_ema = False
        self.t_eps = t_eps
        self.loss_type = loss_type
        self.loss_weighting = loss_weighting
        self.l1_weight = l1_weight
        self.pesq_weight = pesq_weight
        self.network_scaling = network_scaling
        self.c_in = c_in
        self.c_out = c_out
        self.c_skip = c_skip
        self.sigma_data = sigma_data
        self.num_eval_files = num_eval_files
        self.sr = sr
        # Initialize PESQ loss if pesq_weight > 0.0
        if pesq_weight > 0.0:
            self.pesq_loss = PesqLoss(1.0, sample_rate=sr).eval()
            for param in self.pesq_loss.parameters():
                param.requires_grad = False
        self.save_hyperparameters(ignore=['no_wandb'])
        self.data_module = data_module_cls(**kwargs, gpu=kwargs.get('gpus', 0) > 0)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer

    def optimizer_step(self, *args, **kwargs):
        # Method overridden so that the EMA params are updated after each optimizer step
        super().optimizer_step(*args, **kwargs)
        self.ema.update(self.dnn.parameters())

    # on_load_checkpoint / on_save_checkpoint needed for EMA storing/loading
    def on_load_checkpoint(self, checkpoint):
        ema = checkpoint.get('ema', None)
        if ema is not None:
            self.ema.load_state_dict(checkpoint['ema'])
        else:
            self._error_loading_ema = True
            warnings.warn("EMA state_dict not found in checkpoint!")

    def on_save_checkpoint(self, checkpoint):
        checkpoint['ema'] = self.ema.state_dict()

    def train(self, mode, no_ema=False):
        res = super().train(mode)  # call the standard `train` method with the given mode
        if not self._error_loading_ema:
            if mode == False and not no_ema:
                # eval
                self.ema.store(self.dnn.parameters())        # store current params in EMA
                self.ema.copy_to(self.dnn.parameters())      # copy EMA parameters over current params for evaluation
            else:
                # train
                if self.ema.collected_params is not None:
                    self.ema.restore(self.dnn.parameters())  # restore the EMA weights (if stored)
        return res

    def eval(self, no_ema=False):
        return self.train(False, no_ema=no_ema)

    def _loss(self, forward_out, x_t, z, t, mean, x):
        """

        Different loss functions can be used to train the score model, see the paper: 

        

        Julius Richter, Danilo de Oliveira, and Timo Gerkmann

        "Investigating Training Objectives for Generative Speech Enhancement"

        https://arxiv.org/abs/2409.10753



        """

        sigma = self.sde._std(t)[:, None, None, None]

        if self.loss_type == "score_matching":
            score = forward_out
            if self.loss_weighting == "sigma^2":
                losses = torch.square(torch.abs(score * sigma + z)) # Eq. (7)
            else:
                raise ValueError("Invalid loss weighting for loss_type=score_matching: {}".format(self.loss_weighting))
            # Sum over spatial dimensions and channels and mean over batch
            loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1))
        elif self.loss_type == "denoiser":
            score = forward_out
            D = score * sigma.pow(2) + x_t # equivalent to Eq. (10)
            losses = torch.square(torch.abs(D - mean)) # Eq. (8)
            if self.loss_weighting == "1":
                losses = losses
            elif self.loss_weighting == "sigma^2":
                losses = losses * sigma**2
            elif self.loss_weighting == "edm":
                losses = ((sigma**2 + self.sigma_data**2)/((sigma*self.sigma_data)**2))[:, None, None, None] * losses
            else:
                raise ValueError("Invalid loss weighting for loss_type=denoiser: {}".format(self.loss_weighting))
            # Sum over spatial dimensions and channels and mean over batch
            loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1))     
        elif self.loss_type == "data_prediction":
            x_hat = forward_out
            B, C, F, T = x.shape

            # losses in the time-frequency domain (tf)
            losses_tf = (1/(F*T))*torch.square(torch.abs(x_hat - x))
            losses_tf = torch.mean(0.5*torch.sum(losses_tf.reshape(losses_tf.shape[0], -1), dim=-1))

            # losses in the time domain (td)
            target_len = (self.data_module.num_frames - 1) * self.data_module.hop_length
            x_hat_td = self.to_audio(x_hat.squeeze(), target_len)
            x_td = self.to_audio(x.squeeze(), target_len)
            losses_l1 = (1 / target_len) * torch.abs(x_hat_td - x_td)
            losses_l1 = torch.mean(0.5*torch.sum(losses_l1.reshape(losses_l1.shape[0], -1), dim=-1))

            # losses using PESQ
            if self.pesq_weight > 0.0:
                losses_pesq = self.pesq_loss(x_td, x_hat_td)
                losses_pesq = torch.mean(losses_pesq)
                # combine the losses
                loss = losses_tf + self.l1_weight * losses_l1 + self.pesq_weight * losses_pesq 
            else:
                loss = losses_tf + self.l1_weight * losses_l1
        else:
            raise ValueError("Invalid loss type: {}".format(self.loss_type))

        return loss

    def _step(self, batch, batch_idx):
        x, y = batch
        t = torch.rand(x.shape[0], device=x.device) * (self.sde.T - self.t_eps) + self.t_eps
        mean, std = self.sde.marginal_prob(x, y, t)
        z = torch.randn_like(x)  # i.i.d. normal distributed with var=0.5
        sigma = std[:, None, None, None]
        x_t = mean + sigma * z
        forward_out = self(x_t, y, t)
        loss = self._loss(forward_out, x_t, z, t, mean, x)
        return loss

    def training_step(self, batch, batch_idx):
        loss = self._step(batch, batch_idx)
        self.log('train_loss', loss, on_step=True, on_epoch=True, sync_dist=True, prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx):
        # Evaluate speech enhancement performance
        if batch_idx == 0 and self.num_eval_files != 0:
            rank = dist.get_rank()
            world_size = dist.get_world_size()

            # Split the evaluation files among the GPUs
            eval_files_per_gpu = self.num_eval_files // world_size

            clean_files = self.data_module.valid_set.clean_files[:self.num_eval_files]
            noisy_files = self.data_module.valid_set.noisy_files[:self.num_eval_files]

            # Select the files for this GPU     
            if rank == world_size - 1:
                clean_files = clean_files[rank*eval_files_per_gpu:]
                noisy_files = noisy_files[rank*eval_files_per_gpu:]
            else:   
                clean_files = clean_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu]
                noisy_files = noisy_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu]  

            # Evaluate the performance of the model
            pesq_sum = 0; si_sdr_sum = 0; estoi_sum = 0; 
            for (clean_file, noisy_file) in zip(clean_files, noisy_files):
                # Load the clean and noisy speech
                x, sr_x = load(clean_file)
                x = x.squeeze().numpy()
                y, sr_y = load(noisy_file) 
                assert sr_x == sr_y, "Sample rates of clean and noisy files do not match!"

                # Resample if necessary
                if sr_x != 16000:
                    x_16k = resample(x, orig_sr=sr_x, target_sr=16000).squeeze()
                else:
                    x_16k = x

                # Enhance the noisy speech
                x_hat = self.enhance(y, N=self.sde.N)
                if self.sr != 16000:
                    x_hat_16k = resample(x_hat, orig_sr=self.sr, target_sr=16000).squeeze()
                else:
                    x_hat_16k = x_hat    
        
                pesq_sum += pesq(16000, x_16k, x_hat_16k, 'wb') 
                si_sdr_sum += si_sdr(x, x_hat)
                estoi_sum += stoi(x, x_hat, self.sr, extended=True)

            pesq_avg = pesq_sum / len(clean_files)
            si_sdr_avg = si_sdr_sum / len(clean_files)
            estoi_avg = estoi_sum / len(clean_files)

            self.log('pesq', pesq_avg, on_step=False, on_epoch=True, sync_dist=True)
            self.log('si_sdr', si_sdr_avg, on_step=False, on_epoch=True, sync_dist=True)
            self.log('estoi', estoi_avg, on_step=False, on_epoch=True, sync_dist=True)

        loss = self._step(batch, batch_idx)
        self.log('valid_loss', loss, on_step=False, on_epoch=True, sync_dist=True)

        return loss

    def forward(self, x_t, y, t):
        """

        The model forward pass. In [1] and [2], the model estimates the score function. In [3], the model estimates 

        either the score function or the target data for the Schrödinger bridge (loss_type='data_prediction').

        

        [1] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and  Timo Gerkmann 

            "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models"

            IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023. 



        [2] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, and Timo Gerkmann

            "EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation"

            ISCA Interspecch, Kos, Greece, Sept. 2024. 



        [3] Julius Richter, Danilo de Oliveira, and Timo Gerkmann

            "Investigating Training Objectives for Generative Speech Enhancement"

            https://arxiv.org/abs/2409.10753



        """

        # In [3], we use new code with backbone='ncsnpp_v2':
        if self.backbone == "ncsnpp_v2":
            F = self.dnn(self._c_in(t) * x_t, self._c_in(t) * y, t)
            
            # Scaling the network output, see below Eq. (7) in the paper
            if self.network_scaling == "1/sigma":
                std = self.sde._std(t)
                F = F / std[:, None, None, None]
            elif self.network_scaling == "1/t":
                F = F / t[:, None, None, None]

            # The loss type determines the output of the model
            if self.loss_type == "score_matching":
                score = self._c_skip(t) * x_t + self._c_out(t) * F
                return score
            elif self.loss_type == "denoiser":
                sigmas = self.sde._std(t)[:, None, None, None]
                score = (F - x_t) / sigmas.pow(2)
                return score
            elif self.loss_type == 'data_prediction':
                x_hat = self._c_skip(t) * x_t + self._c_out(t) * F
                return x_hat
                
        # In [1] and [2], we use the old code:
        else:
            dnn_input = torch.cat([x_t, y], dim=1)            
            score = -self.dnn(dnn_input, t)
            return score

    def _c_in(self, t):
        if self.c_in == "1":
            return 1.0
        elif self.c_in == "edm":
            sigma = self.sde._std(t)
            return (1.0 / torch.sqrt(sigma**2 + self.sigma_data**2))[:, None, None, None]
        else:
            raise ValueError("Invalid c_in type: {}".format(self.c_in))
    
    def _c_out(self, t):
        if self.c_out == "1":
            return 1.0
        elif self.c_out == "sigma":
            return self.sde._std(t)[:, None, None, None]
        elif self.c_out == "1/sigma":
            return 1.0 / self.sde._std(t)[:, None, None, None] 
        elif self.c_out == "edm":
            sigma = self.sde._std(t)
            return ((sigma * self.sigma_data) / torch.sqrt(self.sigma_data**2 + sigma**2))[:, None, None, None]
        else:
            raise ValueError("Invalid c_out type: {}".format(self.c_out))
    
    def _c_skip(self, t):
        if self.c_skip == "0":
            return 0.0
        elif self.c_skip == "edm":
            sigma = self.sde._std(t)
            return (self.sigma_data**2 / (sigma**2 + self.sigma_data**2))[:, None, None, None]
        else:
            raise ValueError("Invalid c_skip type: {}".format(self.c_skip))

    def to(self, *args, **kwargs):
        """Override PyTorch .to() to also transfer the EMA of the model weights"""
        self.ema.to(*args, **kwargs)
        return super().to(*args, **kwargs)

    def get_pc_sampler(self, predictor_name, corrector_name, y, N=None, minibatch=None, **kwargs):
        N = self.sde.N if N is None else N
        sde = self.sde.copy()
        sde.N = N

        kwargs = {"eps": self.t_eps, **kwargs}
        if minibatch is None:
            return sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y, **kwargs)
        else:
            M = y.shape[0]
            def batched_sampling_fn():
                samples, ns = [], []
                for i in range(int(ceil(M / minibatch))):
                    y_mini = y[i*minibatch:(i+1)*minibatch]
                    sampler = sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y_mini, **kwargs)
                    sample, n = sampler()
                    samples.append(sample)
                    ns.append(n)
                samples = torch.cat(samples, dim=0)
                return samples, ns
            return batched_sampling_fn

    def get_ode_sampler(self, y, N=None, minibatch=None, **kwargs):
        N = self.sde.N if N is None else N
        sde = self.sde.copy()
        sde.N = N

        kwargs = {"eps": self.t_eps, **kwargs}
        if minibatch is None:
            return sampling.get_ode_sampler(sde, self, y=y, **kwargs)
        else:
            M = y.shape[0]
            def batched_sampling_fn():
                samples, ns = [], []
                for i in range(int(ceil(M / minibatch))):
                    y_mini = y[i*minibatch:(i+1)*minibatch]
                    sampler = sampling.get_ode_sampler(sde, self, y=y_mini, **kwargs)
                    sample, n = sampler()
                    samples.append(sample)
                    ns.append(n)
                samples = torch.cat(samples, dim=0)
                return sample, ns
            return batched_sampling_fn

    def get_sb_sampler(self, sde, y, sampler_type="ode", N=None, **kwargs):
        N = sde.N if N is None else N
        sde = self.sde.copy()
        sde.N = N if N is not None else sde.N

        return sampling.get_sb_sampler(sde, self, y=y, sampler_type=sampler_type, **kwargs)

    def train_dataloader(self):
        return self.data_module.train_dataloader()

    def val_dataloader(self):
        return self.data_module.val_dataloader()

    def test_dataloader(self):
        return self.data_module.test_dataloader()

    def setup(self, stage=None):
        return self.data_module.setup(stage=stage)

    def to_audio(self, spec, length=None):
        return self._istft(self._backward_transform(spec), length)

    def _forward_transform(self, spec):
        return self.data_module.spec_fwd(spec)

    def _backward_transform(self, spec):
        return self.data_module.spec_back(spec)

    def _stft(self, sig):
        return self.data_module.stft(sig)

    def _istft(self, spec, length=None):
        return self.data_module.istft(spec, length)

    def enhance(self, y, sampler_type="pc", predictor="reverse_diffusion",

        corrector="ald", N=30, corrector_steps=1, snr=0.5, timeit=False,

        **kwargs

    ):
        """

        One-call speech enhancement of noisy speech `y`, for convenience.

        """
        start = time.time()
        T_orig = y.size(1) 
        norm_factor = y.abs().max().item()
        y = y / norm_factor
        Y = torch.unsqueeze(self._forward_transform(self._stft(y.cuda())), 0)
        Y = pad_spec(Y)

        # SGMSE sampling with OUVE SDE
        if self.sde.__class__.__name__ == 'OUVESDE':
            if self.sde.sampler_type == "pc":
                sampler = self.get_pc_sampler(predictor, corrector, Y.cuda(), N=N, 
                    corrector_steps=corrector_steps, snr=snr, intermediate=False,
                    **kwargs)
            elif self.sde.sampler_type == "ode":
                sampler = self.get_ode_sampler(Y.cuda(), N=N, **kwargs)
            else:
                raise ValueError("Invalid sampler type for SGMSE sampling: {}".format(sampler_type))
        # Schrödinger bridge sampling with VE SDE
        elif self.sde.__class__.__name__ == 'SBVESDE':
            sampler = self.get_sb_sampler(sde=self.sde, y=Y.cuda(), sampler_type=self.sde.sampler_type)
        else:
            raise ValueError("Invalid SDE type for speech enhancement: {}".format(self.sde.__class__.__name__))

        sample, nfe = sampler()
        x_hat = self.to_audio(sample.squeeze(), T_orig)
        x_hat = x_hat * norm_factor
        x_hat = x_hat.squeeze().cpu().numpy()
        end = time.time()
        if timeit:
            rtf = (end-start)/(len(x_hat)/self.sr)
            return x_hat, nfe, rtf
        else:
            return x_hat