|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Common layers for defining score networks.
|
|
"""
|
|
import math
|
|
import string
|
|
from functools import partial
|
|
import torch.nn as nn
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
from .normalization import ConditionalInstanceNorm2dPlus
|
|
|
|
|
|
def get_act(config):
|
|
"""Get activation functions from the config file."""
|
|
|
|
if config == 'elu':
|
|
return nn.ELU()
|
|
elif config == 'relu':
|
|
return nn.ReLU()
|
|
elif config == 'lrelu':
|
|
return nn.LeakyReLU(negative_slope=0.2)
|
|
elif config == 'swish':
|
|
return nn.SiLU()
|
|
else:
|
|
raise NotImplementedError('activation function does not exist!')
|
|
|
|
|
|
def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=0):
|
|
"""1x1 convolution. Same as NCSNv1/v2."""
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias, dilation=dilation,
|
|
padding=padding)
|
|
init_scale = 1e-10 if init_scale == 0 else init_scale
|
|
conv.weight.data *= init_scale
|
|
conv.bias.data *= init_scale
|
|
return conv
|
|
|
|
|
|
def variance_scaling(scale, mode, distribution,
|
|
in_axis=1, out_axis=0,
|
|
dtype=torch.float32,
|
|
device='cpu'):
|
|
"""Ported from JAX. """
|
|
|
|
def _compute_fans(shape, in_axis=1, out_axis=0):
|
|
receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
|
|
fan_in = shape[in_axis] * receptive_field_size
|
|
fan_out = shape[out_axis] * receptive_field_size
|
|
return fan_in, fan_out
|
|
|
|
def init(shape, dtype=dtype, device=device):
|
|
fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
|
|
if mode == "fan_in":
|
|
denominator = fan_in
|
|
elif mode == "fan_out":
|
|
denominator = fan_out
|
|
elif mode == "fan_avg":
|
|
denominator = (fan_in + fan_out) / 2
|
|
else:
|
|
raise ValueError(
|
|
"invalid mode for variance scaling initializer: {}".format(mode))
|
|
variance = scale / denominator
|
|
if distribution == "normal":
|
|
return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance)
|
|
elif distribution == "uniform":
|
|
return (torch.rand(*shape, dtype=dtype, device=device) * 2. - 1.) * np.sqrt(3 * variance)
|
|
else:
|
|
raise ValueError("invalid distribution for variance scaling initializer")
|
|
|
|
return init
|
|
|
|
|
|
def default_init(scale=1.):
|
|
"""The same initialization used in DDPM."""
|
|
scale = 1e-10 if scale == 0 else scale
|
|
return variance_scaling(scale, 'fan_avg', 'uniform')
|
|
|
|
|
|
class Dense(nn.Module):
|
|
"""Linear layer with `default_init`."""
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
|
|
def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1., padding=0):
|
|
"""1x1 convolution with DDPM initialization."""
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
|
|
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
|
|
nn.init.zeros_(conv.bias)
|
|
return conv
|
|
|
|
|
|
def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1):
|
|
"""3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
|
|
init_scale = 1e-10 if init_scale == 0 else init_scale
|
|
conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
|
|
dilation=dilation, padding=padding, kernel_size=3)
|
|
conv.weight.data *= init_scale
|
|
conv.bias.data *= init_scale
|
|
return conv
|
|
|
|
|
|
def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1):
|
|
"""3x3 convolution with DDPM initialization."""
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding,
|
|
dilation=dilation, bias=bias)
|
|
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
|
|
nn.init.zeros_(conv.bias)
|
|
return conv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CRPBlock(nn.Module):
|
|
def __init__(self, features, n_stages, act=nn.ReLU(), maxpool=True):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList()
|
|
for i in range(n_stages):
|
|
self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False))
|
|
self.n_stages = n_stages
|
|
if maxpool:
|
|
self.pool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
|
|
else:
|
|
self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2)
|
|
|
|
self.act = act
|
|
|
|
def forward(self, x):
|
|
x = self.act(x)
|
|
path = x
|
|
for i in range(self.n_stages):
|
|
path = self.pool(path)
|
|
path = self.convs[i](path)
|
|
x = path + x
|
|
return x
|
|
|
|
|
|
class CondCRPBlock(nn.Module):
|
|
def __init__(self, features, n_stages, num_classes, normalizer, act=nn.ReLU()):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList()
|
|
self.norms = nn.ModuleList()
|
|
self.normalizer = normalizer
|
|
for i in range(n_stages):
|
|
self.norms.append(normalizer(features, num_classes, bias=True))
|
|
self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False))
|
|
|
|
self.n_stages = n_stages
|
|
self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2)
|
|
self.act = act
|
|
|
|
def forward(self, x, y):
|
|
x = self.act(x)
|
|
path = x
|
|
for i in range(self.n_stages):
|
|
path = self.norms[i](path, y)
|
|
path = self.pool(path)
|
|
path = self.convs[i](path)
|
|
|
|
x = path + x
|
|
return x
|
|
|
|
|
|
class RCUBlock(nn.Module):
|
|
def __init__(self, features, n_blocks, n_stages, act=nn.ReLU()):
|
|
super().__init__()
|
|
|
|
for i in range(n_blocks):
|
|
for j in range(n_stages):
|
|
setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False))
|
|
|
|
self.stride = 1
|
|
self.n_blocks = n_blocks
|
|
self.n_stages = n_stages
|
|
self.act = act
|
|
|
|
def forward(self, x):
|
|
for i in range(self.n_blocks):
|
|
residual = x
|
|
for j in range(self.n_stages):
|
|
x = self.act(x)
|
|
x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)
|
|
|
|
x += residual
|
|
return x
|
|
|
|
|
|
class CondRCUBlock(nn.Module):
|
|
def __init__(self, features, n_blocks, n_stages, num_classes, normalizer, act=nn.ReLU()):
|
|
super().__init__()
|
|
|
|
for i in range(n_blocks):
|
|
for j in range(n_stages):
|
|
setattr(self, '{}_{}_norm'.format(i + 1, j + 1), normalizer(features, num_classes, bias=True))
|
|
setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False))
|
|
|
|
self.stride = 1
|
|
self.n_blocks = n_blocks
|
|
self.n_stages = n_stages
|
|
self.act = act
|
|
self.normalizer = normalizer
|
|
|
|
def forward(self, x, y):
|
|
for i in range(self.n_blocks):
|
|
residual = x
|
|
for j in range(self.n_stages):
|
|
x = getattr(self, '{}_{}_norm'.format(i + 1, j + 1))(x, y)
|
|
x = self.act(x)
|
|
x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)
|
|
|
|
x += residual
|
|
return x
|
|
|
|
|
|
class MSFBlock(nn.Module):
|
|
def __init__(self, in_planes, features):
|
|
super().__init__()
|
|
assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
|
|
self.convs = nn.ModuleList()
|
|
self.features = features
|
|
|
|
for i in range(len(in_planes)):
|
|
self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True))
|
|
|
|
def forward(self, xs, shape):
|
|
sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
|
|
for i in range(len(self.convs)):
|
|
h = self.convs[i](xs[i])
|
|
h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
|
|
sums += h
|
|
return sums
|
|
|
|
|
|
class CondMSFBlock(nn.Module):
|
|
def __init__(self, in_planes, features, num_classes, normalizer):
|
|
super().__init__()
|
|
assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
|
|
|
|
self.convs = nn.ModuleList()
|
|
self.norms = nn.ModuleList()
|
|
self.features = features
|
|
self.normalizer = normalizer
|
|
|
|
for i in range(len(in_planes)):
|
|
self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True))
|
|
self.norms.append(normalizer(in_planes[i], num_classes, bias=True))
|
|
|
|
def forward(self, xs, y, shape):
|
|
sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
|
|
for i in range(len(self.convs)):
|
|
h = self.norms[i](xs[i], y)
|
|
h = self.convs[i](h)
|
|
h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
|
|
sums += h
|
|
return sums
|
|
|
|
|
|
class RefineBlock(nn.Module):
|
|
def __init__(self, in_planes, features, act=nn.ReLU(), start=False, end=False, maxpool=True):
|
|
super().__init__()
|
|
|
|
assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
|
|
self.n_blocks = n_blocks = len(in_planes)
|
|
|
|
self.adapt_convs = nn.ModuleList()
|
|
for i in range(n_blocks):
|
|
self.adapt_convs.append(RCUBlock(in_planes[i], 2, 2, act))
|
|
|
|
self.output_convs = RCUBlock(features, 3 if end else 1, 2, act)
|
|
|
|
if not start:
|
|
self.msf = MSFBlock(in_planes, features)
|
|
|
|
self.crp = CRPBlock(features, 2, act, maxpool=maxpool)
|
|
|
|
def forward(self, xs, output_shape):
|
|
assert isinstance(xs, tuple) or isinstance(xs, list)
|
|
hs = []
|
|
for i in range(len(xs)):
|
|
h = self.adapt_convs[i](xs[i])
|
|
hs.append(h)
|
|
|
|
if self.n_blocks > 1:
|
|
h = self.msf(hs, output_shape)
|
|
else:
|
|
h = hs[0]
|
|
|
|
h = self.crp(h)
|
|
h = self.output_convs(h)
|
|
|
|
return h
|
|
|
|
|
|
class CondRefineBlock(nn.Module):
|
|
def __init__(self, in_planes, features, num_classes, normalizer, act=nn.ReLU(), start=False, end=False):
|
|
super().__init__()
|
|
|
|
assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
|
|
self.n_blocks = n_blocks = len(in_planes)
|
|
|
|
self.adapt_convs = nn.ModuleList()
|
|
for i in range(n_blocks):
|
|
self.adapt_convs.append(
|
|
CondRCUBlock(in_planes[i], 2, 2, num_classes, normalizer, act)
|
|
)
|
|
|
|
self.output_convs = CondRCUBlock(features, 3 if end else 1, 2, num_classes, normalizer, act)
|
|
|
|
if not start:
|
|
self.msf = CondMSFBlock(in_planes, features, num_classes, normalizer)
|
|
|
|
self.crp = CondCRPBlock(features, 2, num_classes, normalizer, act)
|
|
|
|
def forward(self, xs, y, output_shape):
|
|
assert isinstance(xs, tuple) or isinstance(xs, list)
|
|
hs = []
|
|
for i in range(len(xs)):
|
|
h = self.adapt_convs[i](xs[i], y)
|
|
hs.append(h)
|
|
|
|
if self.n_blocks > 1:
|
|
h = self.msf(hs, y, output_shape)
|
|
else:
|
|
h = hs[0]
|
|
|
|
h = self.crp(h, y)
|
|
h = self.output_convs(h, y)
|
|
|
|
return h
|
|
|
|
|
|
class ConvMeanPool(nn.Module):
|
|
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False):
|
|
super().__init__()
|
|
if not adjust_padding:
|
|
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
|
|
self.conv = conv
|
|
else:
|
|
conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
|
|
|
|
self.conv = nn.Sequential(
|
|
nn.ZeroPad2d((1, 0, 1, 0)),
|
|
conv
|
|
)
|
|
|
|
def forward(self, inputs):
|
|
output = self.conv(inputs)
|
|
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
|
|
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
|
|
return output
|
|
|
|
|
|
class MeanPoolConv(nn.Module):
|
|
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
|
|
|
|
def forward(self, inputs):
|
|
output = inputs
|
|
output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
|
|
output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
|
|
return self.conv(output)
|
|
|
|
|
|
class UpsampleConv(nn.Module):
|
|
def __init__(self, input_dim, output_dim, kernel_size=3, biases=True):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
|
|
self.pixelshuffle = nn.PixelShuffle(upscale_factor=2)
|
|
|
|
def forward(self, inputs):
|
|
output = inputs
|
|
output = torch.cat([output, output, output, output], dim=1)
|
|
output = self.pixelshuffle(output)
|
|
return self.conv(output)
|
|
|
|
|
|
class ConditionalResidualBlock(nn.Module):
|
|
def __init__(self, input_dim, output_dim, num_classes, resample=1, act=nn.ELU(),
|
|
normalization=ConditionalInstanceNorm2dPlus, adjust_padding=False, dilation=None):
|
|
super().__init__()
|
|
self.non_linearity = act
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
self.resample = resample
|
|
self.normalization = normalization
|
|
if resample == 'down':
|
|
if dilation > 1:
|
|
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation)
|
|
self.normalize2 = normalization(input_dim, num_classes)
|
|
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
|
|
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
|
|
else:
|
|
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
|
|
self.normalize2 = normalization(input_dim, num_classes)
|
|
self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding)
|
|
conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding)
|
|
|
|
elif resample is None:
|
|
if dilation > 1:
|
|
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
|
|
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
|
|
self.normalize2 = normalization(output_dim, num_classes)
|
|
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation)
|
|
else:
|
|
conv_shortcut = nn.Conv2d
|
|
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
|
|
self.normalize2 = normalization(output_dim, num_classes)
|
|
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
|
|
else:
|
|
raise Exception('invalid resample value')
|
|
|
|
if output_dim != input_dim or resample is not None:
|
|
self.shortcut = conv_shortcut(input_dim, output_dim)
|
|
|
|
self.normalize1 = normalization(input_dim, num_classes)
|
|
|
|
def forward(self, x, y):
|
|
output = self.normalize1(x, y)
|
|
output = self.non_linearity(output)
|
|
output = self.conv1(output)
|
|
output = self.normalize2(output, y)
|
|
output = self.non_linearity(output)
|
|
output = self.conv2(output)
|
|
|
|
if self.output_dim == self.input_dim and self.resample is None:
|
|
shortcut = x
|
|
else:
|
|
shortcut = self.shortcut(x)
|
|
|
|
return shortcut + output
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
|
|
normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
|
|
super().__init__()
|
|
self.non_linearity = act
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
self.resample = resample
|
|
self.normalization = normalization
|
|
if resample == 'down':
|
|
if dilation > 1:
|
|
self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation)
|
|
self.normalize2 = normalization(input_dim)
|
|
self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
|
|
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
|
|
else:
|
|
self.conv1 = ncsn_conv3x3(input_dim, input_dim)
|
|
self.normalize2 = normalization(input_dim)
|
|
self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding)
|
|
conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding)
|
|
|
|
elif resample is None:
|
|
if dilation > 1:
|
|
conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
|
|
self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
|
|
self.normalize2 = normalization(output_dim)
|
|
self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation)
|
|
else:
|
|
|
|
conv_shortcut = partial(ncsn_conv1x1)
|
|
self.conv1 = ncsn_conv3x3(input_dim, output_dim)
|
|
self.normalize2 = normalization(output_dim)
|
|
self.conv2 = ncsn_conv3x3(output_dim, output_dim)
|
|
else:
|
|
raise Exception('invalid resample value')
|
|
|
|
if output_dim != input_dim or resample is not None:
|
|
self.shortcut = conv_shortcut(input_dim, output_dim)
|
|
|
|
self.normalize1 = normalization(input_dim)
|
|
|
|
def forward(self, x):
|
|
output = self.normalize1(x)
|
|
output = self.non_linearity(output)
|
|
output = self.conv1(output)
|
|
output = self.normalize2(output)
|
|
output = self.non_linearity(output)
|
|
output = self.conv2(output)
|
|
|
|
if self.output_dim == self.input_dim and self.resample is None:
|
|
shortcut = x
|
|
else:
|
|
shortcut = self.shortcut(x)
|
|
|
|
return shortcut + output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000):
|
|
assert len(timesteps.shape) == 1
|
|
half_dim = embedding_dim // 2
|
|
|
|
emb = math.log(max_positions) / (half_dim - 1)
|
|
|
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb)
|
|
|
|
|
|
emb = timesteps.float()[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1:
|
|
emb = F.pad(emb, (0, 1), mode='constant')
|
|
assert emb.shape == (timesteps.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
|
|
def _einsum(a, b, c, x, y):
|
|
einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c))
|
|
return torch.einsum(einsum_str, x, y)
|
|
|
|
|
|
def contract_inner(x, y):
|
|
"""tensordot(x, y, 1)."""
|
|
x_chars = list(string.ascii_lowercase[:len(x.shape)])
|
|
y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x.shape)])
|
|
y_chars[0] = x_chars[-1]
|
|
out_chars = x_chars[:-1] + y_chars[1:]
|
|
return _einsum(x_chars, y_chars, out_chars, x, y)
|
|
|
|
|
|
class NIN(nn.Module):
|
|
def __init__(self, in_dim, num_units, init_scale=0.1):
|
|
super().__init__()
|
|
self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True)
|
|
self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
|
|
|
|
def forward(self, x):
|
|
x = x.permute(0, 2, 3, 1)
|
|
y = contract_inner(x, self.W) + self.b
|
|
return y.permute(0, 3, 1, 2)
|
|
|
|
|
|
class AttnBlock(nn.Module):
|
|
"""Channel-wise self-attention block."""
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6)
|
|
self.NIN_0 = NIN(channels, channels)
|
|
self.NIN_1 = NIN(channels, channels)
|
|
self.NIN_2 = NIN(channels, channels)
|
|
self.NIN_3 = NIN(channels, channels, init_scale=0.)
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
h = self.GroupNorm_0(x)
|
|
q = self.NIN_0(h)
|
|
k = self.NIN_1(h)
|
|
v = self.NIN_2(h)
|
|
|
|
w = torch.einsum('bchw,bcij->bhwij', q, k) * (int(C) ** (-0.5))
|
|
w = torch.reshape(w, (B, H, W, H * W))
|
|
w = F.softmax(w, dim=-1)
|
|
w = torch.reshape(w, (B, H, W, H, W))
|
|
h = torch.einsum('bhwij,bcij->bchw', w, v)
|
|
h = self.NIN_3(h)
|
|
return x + h
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, channels, with_conv=False):
|
|
super().__init__()
|
|
if with_conv:
|
|
self.Conv_0 = ddpm_conv3x3(channels, channels)
|
|
self.with_conv = with_conv
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
h = F.interpolate(x, (H * 2, W * 2), mode='nearest')
|
|
if self.with_conv:
|
|
h = self.Conv_0(h)
|
|
return h
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(self, channels, with_conv=False):
|
|
super().__init__()
|
|
if with_conv:
|
|
self.Conv_0 = ddpm_conv3x3(channels, channels, stride=2, padding=0)
|
|
self.with_conv = with_conv
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
|
|
if self.with_conv:
|
|
x = F.pad(x, (0, 1, 0, 1))
|
|
x = self.Conv_0(x)
|
|
else:
|
|
x = F.avg_pool2d(x, kernel_size=2, stride=2, padding=0)
|
|
|
|
assert x.shape == (B, C, H // 2, W // 2)
|
|
return x
|
|
|
|
|
|
class ResnetBlockDDPM(nn.Module):
|
|
"""The ResNet Blocks used in DDPM."""
|
|
def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1):
|
|
super().__init__()
|
|
if out_ch is None:
|
|
out_ch = in_ch
|
|
self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=in_ch, eps=1e-6)
|
|
self.act = act
|
|
self.Conv_0 = ddpm_conv3x3(in_ch, out_ch)
|
|
if temb_dim is not None:
|
|
self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
|
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
|
|
nn.init.zeros_(self.Dense_0.bias)
|
|
|
|
self.GroupNorm_1 = nn.GroupNorm(num_groups=32, num_channels=out_ch, eps=1e-6)
|
|
self.Dropout_0 = nn.Dropout(dropout)
|
|
self.Conv_1 = ddpm_conv3x3(out_ch, out_ch, init_scale=0.)
|
|
if in_ch != out_ch:
|
|
if conv_shortcut:
|
|
self.Conv_2 = ddpm_conv3x3(in_ch, out_ch)
|
|
else:
|
|
self.NIN_0 = NIN(in_ch, out_ch)
|
|
self.out_ch = out_ch
|
|
self.in_ch = in_ch
|
|
self.conv_shortcut = conv_shortcut
|
|
|
|
def forward(self, x, temb=None):
|
|
B, C, H, W = x.shape
|
|
assert C == self.in_ch
|
|
out_ch = self.out_ch if self.out_ch else self.in_ch
|
|
h = self.act(self.GroupNorm_0(x))
|
|
h = self.Conv_0(h)
|
|
|
|
if temb is not None:
|
|
h += self.Dense_0(self.act(temb))[:, :, None, None]
|
|
h = self.act(self.GroupNorm_1(h))
|
|
h = self.Dropout_0(h)
|
|
h = self.Conv_1(h)
|
|
if C != out_ch:
|
|
if self.conv_shortcut:
|
|
x = self.Conv_2(x)
|
|
else:
|
|
x = self.NIN_0(x)
|
|
return x + h |