File size: 4,257 Bytes
9310327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import datetime
import os
import json
import numpy as np
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import tensorflow as tf
from tensorflow.keras.models import Model, Sequential, load_model, model_from_json
from tensorflow.compat.v1.keras.backend import set_session
from facial_analysis import FacialImageProcessing

class NpEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        if isinstance(obj, np.floating):
            return float(obj)
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        return super(NpEncoder, self).default(obj)
    
def initialize():
    config = tf.compat.v1.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.compat.v1.Session(config=config)
    set_session(sess)
   

def mobilenet_preprocess_input(x, **kwargs):
    x[..., 0] -= 103.939
    x[..., 1] -= 116.779
    x[..., 2] -= 123.68
    return x


def detect_emotion(frame_bgr):
    imgProcessing = FacialImageProcessing(False)
    model = load_model('./models/affectnet_emotions/mobilenet_7.h5')
    # print(model.summary())
    preprocessing_function = mobilenet_preprocess_input
    INPUT_SIZE = (224, 224)
    idx_to_class = {0: 'Anger', 1: 'Disgust', 2: 'Fear',
                    3: 'Happiness', 4: 'Neutral', 5: 'Sadness', 6: 'Surprise'}

    frame = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
    bounding_boxes, points = imgProcessing.detect_faces(frame)
    points = points.T
    detections = {"id": str(datetime.datetime.now())}

    for bbox, p in zip(bounding_boxes, points):
        face_pred = {}
        box = bbox.astype(np.int)
        x1, y1, x2, y2 = box[0:4]
        face_img = frame[y1:y2, x1:x2, :]
        try:
            face_img = cv2.resize(face_img, INPUT_SIZE)
        except:
            break
        inp = face_img.astype(np.float32)
        inp[..., 0] -= 103.939
        inp[..., 1] -= 116.779
        inp[..., 2] -= 123.68
        inp = np.expand_dims(inp, axis=0)
        scores = model.predict(inp)[0]
        frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 9, 12), 4)
        cv2.putText(frame, idx_to_class[np.argmax(scores)] + ' ' + str(scores[np.argmax(
            scores)]), (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
        face_pred["face_bbox"] = [x1,y1,x2,y2]
        face_pred["emotion_predicted"] = idx_to_class[np.argmax(scores)]
        all_scores = {}
        for i in range(len(scores)):
            all_scores[str(idx_to_class[i])] = scores[i]
        face_pred["scores"] = all_scores

        detections["face"] = face_pred
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    print(detections)
    return frame, detections


def process_video(video):
    basename = os.path.basename(video)
    name_only = os.path.splitext(basename)[0]
    video_outputpath = os.path.join('./output',basename)
    json_outputpath = os.path.join('./output',name_only + '.json')
 
    # Writing to sample.json
    with open(json_outputpath, "w") as jsonfile:
        videocap = cv2.VideoCapture(video)  # fpath)
        ret, frame = videocap.read()
        fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
        fps = 24.0
        size = (frame.shape[1], frame.shape[0])
        out = cv2.VideoWriter(video_outputpath, fourcc, fps, size)
        # for i in range(len(image_array)):
        #     out.write(image_array[i])
        max_frame = 500
        cnt = 0
        while ret == True and cnt < 50:
            processed_frame, detections = detect_emotion(frame)
            json_object = json.dumps(detections, indent=4, cls=NpEncoder)
            jsonfile.write(json_object)
            cv2.imshow('img', np.array(processed_frame, dtype=np.uint8))
            out.write(processed_frame)
            ret, frame = videocap.read()
            cv2.waitKey(1)
            cnt += 1
        videocap.release()
        cv2.destroyAllWindows()
        return out


def main():
    parser = argparse.ArgumentParser(description='Analysis of Video')
    parser.add_argument(
        '-v', '--video', help='Video to be analysed', required=True)
    args = parser.parse_args()
    process_video(args.video)


if __name__ == '__main__':
    main()