Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch.cuda | |
import whisper | |
from whisper.tokenizer import LANGUAGES | |
from vid_to_wav import extract_audio | |
gpu = torch.cuda.is_available() | |
model = None | |
def analyze_transcription(text, duration): | |
word_count = len(text.split()) | |
analysis_text = "The video is {} sec. long and the speaker speaks {} words.".format( | |
duration, word_count) | |
duration_in_min = duration/60 | |
words_per_min = round(word_count /duration_in_min) | |
analysis_text = analysis_text + "The speech speed is {} words-per-minute".format(words_per_min) | |
if words_per_min < 130: | |
analysis_text = analysis_text + "The speaker has spoken slowly that average speakers" | |
elif words_per_min > 150: | |
analysis_text = analysis_text + "The speaker has spoken faster that average speakers" | |
else: | |
analysis_text = analysis_text + "The speaker maintains normal speed during speech making the speech comprehensible to most audiences!" | |
return analysis_text | |
def transcribe(filepath, language, task): | |
print(filepath) | |
audio, audio_file, duration = extract_audio(filepath) | |
print(type) | |
language = None if language == "Detect" else language | |
text = model.transcribe( | |
audio_file, task=task.lower(), language=language, fp16=gpu, | |
)["text"].strip() | |
return text, analyze_transcription(text, duration) | |
def get_interface(model_name="medium"): | |
global model | |
model = whisper.load_model(model_name) | |
return gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
# gr.Audio(label="Record", source="microphone", type="filepath"), | |
gr.Video(label="Upload", source="upload", type="filepath"), | |
gr.Dropdown( | |
label="Language", | |
choices=["Detect"] + sorted([i.title() | |
for i in LANGUAGES.values()]), | |
value="Detect", | |
), | |
gr.Dropdown( | |
label="Task", | |
choices=["Transcribe", "Translate"], | |
value="Transcribe", | |
info="Whether to perform X->X speech recognition or X->English translation", | |
), | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription", lines=26), | |
gr.Textbox(label="Speech Analysis", lines=4)], | |
# theme=gr.themes.Default(), | |
theme=gr.themes.Glass( | |
primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.purple), | |
title="Analysis of Speech from Video", | |
# description=DESCRIPTION, | |
allow_flagging="never", | |
) | |
demo = get_interface() | |
demo.queue().launch(debug=True) | |