Spaces:
Sleeping
Sleeping
#Reduced version of file https://github.com/HSE-asavchenko/HSE_FaceRec_tf/blob/master/age_gender_identity/facial_analysis.py | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import sys | |
import os | |
#os.environ['CUDA_VISIBLE_DEVICES'] = '' | |
import argparse | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
import time | |
import subprocess, re | |
def is_specialfile(path,exts): | |
_, file_extension = os.path.splitext(path) | |
return file_extension.lower() in exts | |
img_extensions=['.jpg','.jpeg','.png'] | |
def is_image(path): | |
return is_specialfile(path,img_extensions) | |
video_extensions=['.mov','.avi'] | |
def is_video(path): | |
return is_specialfile(path,video_extensions) | |
class FacialImageProcessing: | |
# minsize: minimum of faces' size | |
def __init__(self, print_stat=False, minsize = 32): | |
self.print_stat=print_stat | |
self.minsize=minsize | |
models_path,_ = os.path.split(os.path.realpath(__file__)) | |
models_path=os.path.join(models_path,'models','face_detection') | |
model_files={os.path.join(models_path,'mtcnn.pb'):''} | |
with tf.Graph().as_default() as full_graph: | |
for model_file in model_files: | |
tf.import_graph_def(FacialImageProcessing.load_graph_def(model_file), name=model_files[model_file]) | |
self.sess=tf.compat.v1.Session(graph=full_graph)#,config=tf.ConfigProto(device_count={'CPU':1,'GPU':0})) | |
self.pnet, self.rnet, self.onet = FacialImageProcessing.load_mtcnn(self.sess,full_graph) | |
def close(self): | |
self.sess.close() | |
def load_graph_def(frozen_graph_filename): | |
graph_def=None | |
with tf.io.gfile.GFile(frozen_graph_filename, 'rb') as f: | |
graph_def = tf.compat.v1.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
return graph_def | |
def load_graph(frozen_graph_filename, prefix=''): | |
graph_def = FacialImageProcessing.load_graph_def(frozen_graph_filename) | |
with tf.Graph().as_default() as graph: | |
tf.import_graph_def(graph_def, name=prefix) | |
return graph | |
def load_mtcnn(sess,graph): | |
pnet_out_1=graph.get_tensor_by_name('pnet/conv4-2/BiasAdd:0') | |
pnet_out_2=graph.get_tensor_by_name('pnet/prob1:0') | |
pnet_in=graph.get_tensor_by_name('pnet/input:0') | |
rnet_out_1=graph.get_tensor_by_name('rnet/conv5-2/conv5-2:0') | |
rnet_out_2=graph.get_tensor_by_name('rnet/prob1:0') | |
rnet_in=graph.get_tensor_by_name('rnet/input:0') | |
onet_out_1=graph.get_tensor_by_name('onet/conv6-2/conv6-2:0') | |
onet_out_2=graph.get_tensor_by_name('onet/conv6-3/conv6-3:0') | |
onet_out_3=graph.get_tensor_by_name('onet/prob1:0') | |
onet_in=graph.get_tensor_by_name('onet/input:0') | |
pnet_fun = lambda img : sess.run((pnet_out_1, pnet_out_2), feed_dict={pnet_in:img}) | |
rnet_fun = lambda img : sess.run((rnet_out_1, rnet_out_2), feed_dict={rnet_in:img}) | |
onet_fun = lambda img : sess.run((onet_out_1, onet_out_2, onet_out_3), feed_dict={onet_in:img}) | |
return pnet_fun, rnet_fun, onet_fun | |
def bbreg(boundingbox,reg): | |
# calibrate bounding boxes | |
if reg.shape[1]==1: | |
reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) | |
w = boundingbox[:,2]-boundingbox[:,0]+1 | |
h = boundingbox[:,3]-boundingbox[:,1]+1 | |
b1 = boundingbox[:,0]+reg[:,0]*w | |
b2 = boundingbox[:,1]+reg[:,1]*h | |
b3 = boundingbox[:,2]+reg[:,2]*w | |
b4 = boundingbox[:,3]+reg[:,3]*h | |
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) | |
return boundingbox | |
def generateBoundingBox(imap, reg, scale, t): | |
# use heatmap to generate bounding boxes | |
stride=2 | |
cellsize=12 | |
imap = np.transpose(imap) | |
dx1 = np.transpose(reg[:,:,0]) | |
dy1 = np.transpose(reg[:,:,1]) | |
dx2 = np.transpose(reg[:,:,2]) | |
dy2 = np.transpose(reg[:,:,3]) | |
y, x = np.where(imap >= t) | |
if y.shape[0]==1: | |
dx1 = np.flipud(dx1) | |
dy1 = np.flipud(dy1) | |
dx2 = np.flipud(dx2) | |
dy2 = np.flipud(dy2) | |
score = imap[(y,x)] | |
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) | |
if reg.size==0: | |
reg = np.empty((0,3)) | |
bb = np.transpose(np.vstack([y,x])) | |
q1 = np.fix((stride*bb+1)/scale) | |
q2 = np.fix((stride*bb+cellsize-1+1)/scale) | |
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) | |
return boundingbox, reg | |
# function pick = nms(boxes,threshold,type) | |
def nms(boxes, threshold, method): | |
if boxes.size==0: | |
return np.empty((0,3)) | |
x1 = boxes[:,0] | |
y1 = boxes[:,1] | |
x2 = boxes[:,2] | |
y2 = boxes[:,3] | |
s = boxes[:,4] | |
area = (x2-x1+1) * (y2-y1+1) | |
I = np.argsort(s) | |
pick = np.zeros_like(s, dtype=np.int16) | |
counter = 0 | |
while I.size>0: | |
i = I[-1] | |
pick[counter] = i | |
counter += 1 | |
idx = I[0:-1] | |
xx1 = np.maximum(x1[i], x1[idx]) | |
yy1 = np.maximum(y1[i], y1[idx]) | |
xx2 = np.minimum(x2[i], x2[idx]) | |
yy2 = np.minimum(y2[i], y2[idx]) | |
w = np.maximum(0.0, xx2-xx1+1) | |
h = np.maximum(0.0, yy2-yy1+1) | |
inter = w * h | |
if method == 'Min': | |
o = inter / np.minimum(area[i], area[idx]) | |
else: | |
o = inter / (area[i] + area[idx] - inter) | |
I = I[np.where(o<=threshold)] | |
pick = pick[0:counter] | |
return pick | |
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) | |
def pad(total_boxes, w, h): | |
# compute the padding coordinates (pad the bounding boxes to square) | |
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) | |
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) | |
numbox = total_boxes.shape[0] | |
dx = np.ones((numbox), dtype=np.int32) | |
dy = np.ones((numbox), dtype=np.int32) | |
edx = tmpw.copy().astype(np.int32) | |
edy = tmph.copy().astype(np.int32) | |
x = total_boxes[:,0].copy().astype(np.int32) | |
y = total_boxes[:,1].copy().astype(np.int32) | |
ex = total_boxes[:,2].copy().astype(np.int32) | |
ey = total_boxes[:,3].copy().astype(np.int32) | |
tmp = np.where(ex>w) | |
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) | |
ex[tmp] = w | |
tmp = np.where(ey>h) | |
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) | |
ey[tmp] = h | |
tmp = np.where(x<1) | |
dx.flat[tmp] = np.expand_dims(2-x[tmp],1) | |
x[tmp] = 1 | |
tmp = np.where(y<1) | |
dy.flat[tmp] = np.expand_dims(2-y[tmp],1) | |
y[tmp] = 1 | |
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph | |
# function [bboxA] = rerec(bboxA) | |
def rerec(bboxA): | |
# convert bboxA to square | |
h = bboxA[:,3]-bboxA[:,1] | |
w = bboxA[:,2]-bboxA[:,0] | |
l = np.maximum(w, h) | |
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 | |
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 | |
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) | |
return bboxA | |
def detect_faces(self,img): | |
# im: input image | |
# threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold | |
threshold = [ 0.6, 0.7, 0.9 ] # three steps's threshold | |
# fastresize: resize img from last scale (using in high-resolution images) if fastresize==true | |
factor = 0.709 # scale factor | |
factor_count=0 | |
total_boxes=np.empty((0,9)) | |
points=np.array([]) | |
h=img.shape[0] | |
w=img.shape[1] | |
minl=np.amin([h, w]) | |
m=12.0/self.minsize | |
minl=minl*m | |
# creat scale pyramid | |
scales=[] | |
while minl>=12: | |
scales += [m*np.power(factor, factor_count)] | |
minl = minl*factor | |
factor_count += 1 | |
# first stage | |
#t=time.time() | |
for j in range(len(scales)): | |
scale=scales[j] | |
hs=int(np.ceil(h*scale)) | |
ws=int(np.ceil(w*scale)) | |
im_data = cv2.resize(img, (ws,hs), interpolation=cv2.INTER_AREA) | |
im_data = (im_data-127.5)*0.0078125 | |
img_x = np.expand_dims(im_data, 0) | |
img_y = np.transpose(img_x, (0,2,1,3)) | |
out = self.pnet(img_y) | |
out0 = np.transpose(out[0], (0,2,1,3)) | |
out1 = np.transpose(out[1], (0,2,1,3)) | |
boxes, _ = FacialImageProcessing.generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) | |
# inter-scale nms | |
pick = FacialImageProcessing.nms(boxes.copy(), 0.5, 'Union') | |
if boxes.size>0 and pick.size>0: | |
boxes = boxes[pick,:] | |
total_boxes = np.append(total_boxes, boxes, axis=0) | |
numbox = total_boxes.shape[0] | |
#elapsed = time.time() - t | |
#print('1 phase nb=%d elapsed=%f'%(numbox,elapsed)) | |
if numbox>0: | |
pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Union') | |
total_boxes = total_boxes[pick,:] | |
regw = total_boxes[:,2]-total_boxes[:,0] | |
regh = total_boxes[:,3]-total_boxes[:,1] | |
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw | |
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh | |
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw | |
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh | |
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) | |
total_boxes = FacialImageProcessing.rerec(total_boxes.copy()) | |
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) | |
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h) | |
numbox = total_boxes.shape[0] | |
#elapsed = time.time() - t | |
#print('2 phase nb=%d elapsed=%f'%(numbox,elapsed)) | |
if numbox>0: | |
# second stage | |
tempimg = np.zeros((24,24,3,numbox)) | |
for k in range(0,numbox): | |
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) | |
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] | |
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: | |
tempimg[:,:,:,k] = cv2.resize(tmp, (24,24), interpolation=cv2.INTER_AREA) | |
else: | |
return np.empty() | |
tempimg = (tempimg-127.5)*0.0078125 | |
tempimg1 = np.transpose(tempimg, (3,1,0,2)) | |
out = self.rnet(tempimg1) | |
out0 = np.transpose(out[0]) | |
out1 = np.transpose(out[1]) | |
score = out1[1,:] | |
ipass = np.where(score>threshold[1]) | |
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) | |
mv = out0[:,ipass[0]] | |
if total_boxes.shape[0]>0: | |
pick = FacialImageProcessing.nms(total_boxes, 0.7, 'Union') | |
total_boxes = total_boxes[pick,:] | |
total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) | |
total_boxes = FacialImageProcessing.rerec(total_boxes.copy()) | |
numbox = total_boxes.shape[0] | |
#elapsed = time.time() - t | |
#print('3 phase nb=%d elapsed=%f'%(numbox,elapsed)) | |
if numbox>0: | |
# third stage | |
total_boxes = np.fix(total_boxes).astype(np.int32) | |
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h) | |
tempimg = np.zeros((48,48,3,numbox)) | |
for k in range(0,numbox): | |
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) | |
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] | |
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: | |
tempimg[:,:,:,k] = cv2.resize(tmp, (48,48), interpolation=cv2.INTER_AREA) | |
else: | |
return np.empty() | |
tempimg = (tempimg-127.5)*0.0078125 | |
tempimg1 = np.transpose(tempimg, (3,1,0,2)) | |
out = self.onet(tempimg1) | |
out0 = np.transpose(out[0]) | |
out1 = np.transpose(out[1]) | |
out2 = np.transpose(out[2]) | |
score = out2[1,:] | |
points = out1 | |
ipass = np.where(score>threshold[2]) | |
points = points[:,ipass[0]] | |
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) | |
mv = out0[:,ipass[0]] | |
w = total_boxes[:,2]-total_boxes[:,0]+1 | |
h = total_boxes[:,3]-total_boxes[:,1]+1 | |
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 | |
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 | |
if total_boxes.shape[0]>0: | |
total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv)) | |
pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Min') | |
total_boxes = total_boxes[pick,:] | |
points = points[:,pick] | |
#elapsed = time.time() - t | |
#print('4 phase elapsed=%f'%(elapsed)) | |
return total_boxes, points |