hf-speech-eval / facial_analysis.py
space-sue's picture
initial commit
9310327
#Reduced version of file https://github.com/HSE-asavchenko/HSE_FaceRec_tf/blob/master/age_gender_identity/facial_analysis.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = ''
import argparse
import tensorflow as tf
import numpy as np
import cv2
import time
import subprocess, re
def is_specialfile(path,exts):
_, file_extension = os.path.splitext(path)
return file_extension.lower() in exts
img_extensions=['.jpg','.jpeg','.png']
def is_image(path):
return is_specialfile(path,img_extensions)
video_extensions=['.mov','.avi']
def is_video(path):
return is_specialfile(path,video_extensions)
class FacialImageProcessing:
# minsize: minimum of faces' size
def __init__(self, print_stat=False, minsize = 32):
self.print_stat=print_stat
self.minsize=minsize
models_path,_ = os.path.split(os.path.realpath(__file__))
models_path=os.path.join(models_path,'models','face_detection')
model_files={os.path.join(models_path,'mtcnn.pb'):''}
with tf.Graph().as_default() as full_graph:
for model_file in model_files:
tf.import_graph_def(FacialImageProcessing.load_graph_def(model_file), name=model_files[model_file])
self.sess=tf.compat.v1.Session(graph=full_graph)#,config=tf.ConfigProto(device_count={'CPU':1,'GPU':0}))
self.pnet, self.rnet, self.onet = FacialImageProcessing.load_mtcnn(self.sess,full_graph)
def close(self):
self.sess.close()
@staticmethod
def load_graph_def(frozen_graph_filename):
graph_def=None
with tf.io.gfile.GFile(frozen_graph_filename, 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
@staticmethod
def load_graph(frozen_graph_filename, prefix=''):
graph_def = FacialImageProcessing.load_graph_def(frozen_graph_filename)
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name=prefix)
return graph
@staticmethod
def load_mtcnn(sess,graph):
pnet_out_1=graph.get_tensor_by_name('pnet/conv4-2/BiasAdd:0')
pnet_out_2=graph.get_tensor_by_name('pnet/prob1:0')
pnet_in=graph.get_tensor_by_name('pnet/input:0')
rnet_out_1=graph.get_tensor_by_name('rnet/conv5-2/conv5-2:0')
rnet_out_2=graph.get_tensor_by_name('rnet/prob1:0')
rnet_in=graph.get_tensor_by_name('rnet/input:0')
onet_out_1=graph.get_tensor_by_name('onet/conv6-2/conv6-2:0')
onet_out_2=graph.get_tensor_by_name('onet/conv6-3/conv6-3:0')
onet_out_3=graph.get_tensor_by_name('onet/prob1:0')
onet_in=graph.get_tensor_by_name('onet/input:0')
pnet_fun = lambda img : sess.run((pnet_out_1, pnet_out_2), feed_dict={pnet_in:img})
rnet_fun = lambda img : sess.run((rnet_out_1, rnet_out_2), feed_dict={rnet_in:img})
onet_fun = lambda img : sess.run((onet_out_1, onet_out_2, onet_out_3), feed_dict={onet_in:img})
return pnet_fun, rnet_fun, onet_fun
@staticmethod
def bbreg(boundingbox,reg):
# calibrate bounding boxes
if reg.shape[1]==1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:,2]-boundingbox[:,0]+1
h = boundingbox[:,3]-boundingbox[:,1]+1
b1 = boundingbox[:,0]+reg[:,0]*w
b2 = boundingbox[:,1]+reg[:,1]*h
b3 = boundingbox[:,2]+reg[:,2]*w
b4 = boundingbox[:,3]+reg[:,3]*h
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
return boundingbox
@staticmethod
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
@staticmethod
def nms(boxes, threshold, method):
if boxes.size==0:
return np.empty((0,3))
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
area = (x2-x1+1) * (y2-y1+1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size>0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2-xx1+1)
h = np.maximum(0.0, yy2-yy1+1)
inter = w * h
if method == 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o<=threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
@staticmethod
def pad(total_boxes, w, h):
# compute the padding coordinates (pad the bounding boxes to square)
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:,0].copy().astype(np.int32)
y = total_boxes[:,1].copy().astype(np.int32)
ex = total_boxes[:,2].copy().astype(np.int32)
ey = total_boxes[:,3].copy().astype(np.int32)
tmp = np.where(ex>w)
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
ex[tmp] = w
tmp = np.where(ey>h)
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
ey[tmp] = h
tmp = np.where(x<1)
dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
x[tmp] = 1
tmp = np.where(y<1)
dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
@staticmethod
def rerec(bboxA):
# convert bboxA to square
h = bboxA[:,3]-bboxA[:,1]
w = bboxA[:,2]-bboxA[:,0]
l = np.maximum(w, h)
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
return bboxA
def detect_faces(self,img):
# im: input image
# threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold
threshold = [ 0.6, 0.7, 0.9 ] # three steps's threshold
# fastresize: resize img from last scale (using in high-resolution images) if fastresize==true
factor = 0.709 # scale factor
factor_count=0
total_boxes=np.empty((0,9))
points=np.array([])
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/self.minsize
minl=minl*m
# creat scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1
# first stage
#t=time.time()
for j in range(len(scales)):
scale=scales[j]
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
im_data = cv2.resize(img, (ws,hs), interpolation=cv2.INTER_AREA)
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = self.pnet(img_y)
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3))
boxes, _ = FacialImageProcessing.generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
# inter-scale nms
pick = FacialImageProcessing.nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
#elapsed = time.time() - t
#print('1 phase nb=%d elapsed=%f'%(numbox,elapsed))
if numbox>0:
pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = FacialImageProcessing.rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
#elapsed = time.time() - t
#print('2 phase nb=%d elapsed=%f'%(numbox,elapsed))
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = cv2.resize(tmp, (24,24), interpolation=cv2.INTER_AREA)
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = self.rnet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = FacialImageProcessing.nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = FacialImageProcessing.rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
#elapsed = time.time() - t
#print('3 phase nb=%d elapsed=%f'%(numbox,elapsed))
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = cv2.resize(tmp, (48,48), interpolation=cv2.INTER_AREA)
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = self.onet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1,:]
points = out1
ipass = np.where(score>threshold[2])
points = points[:,ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
w = total_boxes[:,2]-total_boxes[:,0]+1
h = total_boxes[:,3]-total_boxes[:,1]+1
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
if total_boxes.shape[0]>0:
total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv))
pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick,:]
points = points[:,pick]
#elapsed = time.time() - t
#print('4 phase elapsed=%f'%(elapsed))
return total_boxes, points