Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,185 +1,172 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import time
|
4 |
-
import
|
5 |
-
import torch
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
-
from peft import PeftModel
|
8 |
from typing import Dict, List, TypedDict
|
9 |
from langgraph.graph import StateGraph, END
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
"base_id": "unsloth/gemma-3-1b-it",
|
16 |
-
"adapter_id": "spandana30/project-manager-gemma"
|
17 |
-
},
|
18 |
-
"project_manager": {
|
19 |
-
"base_id": "unsloth/gemma-3-1b-it",
|
20 |
-
"adapter_id": "spandana30/project-manager-gemma"
|
21 |
-
},
|
22 |
-
"software_engineer": {
|
23 |
-
"base_id": "unsloth/gemma-3-1b-it",
|
24 |
-
"adapter_id": "spandana30/project-manager-gemma"
|
25 |
-
},
|
26 |
-
"qa_engineer": {
|
27 |
-
"base_id": "unsloth/gemma-3-1b-it",
|
28 |
-
"adapter_id": "spandana30/project-manager-gemma"
|
29 |
-
}
|
30 |
-
}
|
31 |
-
|
32 |
-
@st.cache_resource
|
33 |
-
def load_agent_model(base_id, adapter_id):
|
34 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
35 |
-
base_id,
|
36 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
37 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
38 |
-
token=HF_TOKEN
|
39 |
-
)
|
40 |
-
model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
|
42 |
-
return model.eval(), tokenizer
|
43 |
-
|
44 |
-
def call_model(prompt: str, model, tokenizer) -> str:
|
45 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
|
46 |
-
outputs = model.generate(
|
47 |
-
**inputs,
|
48 |
-
max_new_tokens=512,
|
49 |
-
do_sample=False,
|
50 |
-
temperature=0.3
|
51 |
-
)
|
52 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
|
54 |
class AgentState(TypedDict):
|
55 |
messages: List[Dict[str, str]]
|
|
|
56 |
html: str
|
57 |
-
|
58 |
-
final_prompt: str
|
59 |
feedback: str
|
60 |
iteration: int
|
61 |
done: bool
|
62 |
timings: Dict[str, float]
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
start = time.time()
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
state["messages"]
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
),
|
104 |
-
"qa_engineer": (
|
105 |
-
"You are a QA Engineer. Your responsibility is to test and evaluate the HTML below for correctness, responsiveness, "
|
106 |
-
"and quality. Provide clear feedback on any issues you find. If everything looks perfect, respond with 'APPROVED'.\n\n"
|
107 |
-
"HTML code:\n{html}"
|
108 |
-
)
|
109 |
-
}
|
110 |
-
|
111 |
-
def generate_ui(user_prompt: str, max_iter: int):
|
112 |
-
state: AgentState = {
|
113 |
-
"messages": [{"role": "user", "content": user_prompt}],
|
114 |
-
"html": "",
|
115 |
-
"refined_request": "",
|
116 |
-
"final_prompt": "",
|
117 |
-
"feedback": "",
|
118 |
-
"iteration": 0,
|
119 |
-
"done": False,
|
120 |
-
"timings": {}
|
121 |
-
}
|
122 |
|
123 |
workflow = StateGraph(AgentState)
|
124 |
-
|
125 |
-
workflow.add_node("
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
}],
|
130 |
-
"refined_request": pm
|
131 |
-
})
|
132 |
-
|
133 |
-
workflow.add_node("project_manager", lambda s: {
|
134 |
-
"messages": s["messages"] + [{
|
135 |
-
"role": "project_manager",
|
136 |
-
"content": (pr := agent(PROMPTS["project_manager"], s, "project_manager", "project_manager"))
|
137 |
-
}],
|
138 |
-
"final_prompt": pr
|
139 |
-
})
|
140 |
-
|
141 |
-
workflow.add_node("software_engineer", lambda s: {
|
142 |
-
"html": (html := agent(PROMPTS["software_engineer"], s, "software_engineer", "software_engineer")),
|
143 |
-
"messages": s["messages"] + [{"role": "software_engineer", "content": html}]
|
144 |
-
})
|
145 |
-
|
146 |
-
def qa_fn(s):
|
147 |
-
feedback = agent(PROMPTS["qa_engineer"], s, "qa_engineer", "qa_engineer")
|
148 |
-
done = "APPROVED" in feedback or s["iteration"] >= max_iter
|
149 |
-
return {
|
150 |
-
"feedback": feedback,
|
151 |
-
"done": done,
|
152 |
-
"iteration": s["iteration"] + 1,
|
153 |
-
"messages": s["messages"] + [{"role": "qa_engineer", "content": feedback}]
|
154 |
-
}
|
155 |
-
|
156 |
-
workflow.add_node("qa_engineer", qa_fn)
|
157 |
|
158 |
workflow.add_edge("product_manager", "project_manager")
|
159 |
-
workflow.add_edge("project_manager", "
|
160 |
-
workflow.add_edge("
|
161 |
-
workflow.
|
|
|
162 |
workflow.set_entry_point("product_manager")
|
163 |
|
164 |
app = workflow.compile()
|
|
|
165 |
final_state = app.invoke(state)
|
166 |
-
return final_state
|
167 |
|
168 |
def main():
|
169 |
-
st.set_page_config(page_title="Multi-Agent
|
170 |
-
st.title("
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
173 |
if st.button("π Generate UI"):
|
174 |
with st.spinner("Agents working..."):
|
175 |
-
|
176 |
-
st.success("β
UI Generated")
|
177 |
-
st.
|
178 |
-
|
179 |
-
st.
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import time
|
4 |
+
import base64
|
|
|
|
|
|
|
5 |
from typing import Dict, List, TypedDict
|
6 |
from langgraph.graph import StateGraph, END
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
|
9 |
+
client = InferenceClient(
|
10 |
+
model="mistralai/Mistral-7B-Instruct-v0.2",
|
11 |
+
token=st.secrets["HF_TOKEN"]
|
12 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class AgentState(TypedDict):
|
15 |
messages: List[Dict[str, str]]
|
16 |
+
design_specs: str
|
17 |
html: str
|
18 |
+
css: str
|
|
|
19 |
feedback: str
|
20 |
iteration: int
|
21 |
done: bool
|
22 |
timings: Dict[str, float]
|
23 |
|
24 |
+
PRODUCT_MANAGER_PROMPT = """You're a product manager. Given the user request:
|
25 |
+
{user_request}
|
26 |
+
Break it down into clear features and priorities."""
|
27 |
+
|
28 |
+
PROJECT_MANAGER_PROMPT = """You're a project manager. Based on these features:
|
29 |
+
{features}
|
30 |
+
Draft a quick development plan with key tasks and timeline."""
|
31 |
+
|
32 |
+
ARCHITECT_PROMPT = """You're a software architect. Create design specs for:
|
33 |
+
{user_request}
|
34 |
+
Include:
|
35 |
+
1. Color palette (primary, secondary, accent)
|
36 |
+
2. Font choices
|
37 |
+
3. Layout structure
|
38 |
+
4. Component styles
|
39 |
+
Don't write code - just design guidance."""
|
40 |
+
|
41 |
+
ENGINEER_PROMPT = """Create a complete HTML page with embedded CSS for:
|
42 |
+
{design_specs}
|
43 |
+
Requirements:
|
44 |
+
1. Full HTML document with <!DOCTYPE>
|
45 |
+
2. CSS inside <style> tags in head
|
46 |
+
3. Mobile-responsive
|
47 |
+
4. Semantic HTML
|
48 |
+
5. Ready-to-use (will work when saved as .html)
|
49 |
+
Output JUST the complete HTML file content:"""
|
50 |
+
|
51 |
+
QA_PROMPT = """Review this website:
|
52 |
+
{html}
|
53 |
+
Check for:
|
54 |
+
1. Visual quality
|
55 |
+
2. Responsiveness
|
56 |
+
3. Functionality
|
57 |
+
Reply "APPROVED" if perfect, or suggest improvements."""
|
58 |
+
|
59 |
+
def call_model(prompt: str, max_retries=3) -> str:
|
60 |
+
for attempt in range(max_retries):
|
61 |
+
try:
|
62 |
+
return client.text_generation(
|
63 |
+
prompt,
|
64 |
+
max_new_tokens=3000,
|
65 |
+
temperature=0.3,
|
66 |
+
return_full_text=False
|
67 |
+
)
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Model call failed (attempt {attempt+1}): {e}")
|
70 |
+
time.sleep(2)
|
71 |
+
return "<html><body><h1>Error generating UI</h1></body></html>"
|
72 |
+
|
73 |
+
def time_agent(agent_func, state: AgentState, label: str):
|
74 |
start = time.time()
|
75 |
+
result = agent_func(state)
|
76 |
+
duration = time.time() - start
|
77 |
+
result["timings"] = state["timings"]
|
78 |
+
result["timings"][label] = duration
|
79 |
+
return result
|
80 |
+
|
81 |
+
def product_manager_agent(state: AgentState):
|
82 |
+
features = call_model(PRODUCT_MANAGER_PROMPT.format(user_request=state["messages"][-1]["content"]))
|
83 |
+
return {"messages": state["messages"] + [{"role": "product_manager", "content": features}]}
|
84 |
+
|
85 |
+
def project_manager_agent(state: AgentState):
|
86 |
+
features_msg = next((m["content"] for m in state["messages"] if m["role"] == "product_manager"), "")
|
87 |
+
plan = call_model(PROJECT_MANAGER_PROMPT.format(features=features_msg))
|
88 |
+
return {"messages": state["messages"] + [{"role": "project_manager", "content": plan}]}
|
89 |
+
|
90 |
+
def software_architect_agent(state: AgentState):
|
91 |
+
specs = call_model(ARCHITECT_PROMPT.format(user_request=state["messages"][-1]["content"]))
|
92 |
+
return {"design_specs": specs, "messages": state["messages"] + [{"role": "software_architect", "content": specs}]}
|
93 |
+
|
94 |
+
def engineer_agent(state: AgentState):
|
95 |
+
html = call_model(ENGINEER_PROMPT.format(design_specs=state["design_specs"]))
|
96 |
+
if not html.strip().startswith("<!DOCTYPE"):
|
97 |
+
html = f"""<!DOCTYPE html>
|
98 |
+
<html><head><meta charset='UTF-8'><meta name='viewport' content='width=device-width, initial-scale=1.0'>
|
99 |
+
<title>Generated UI</title></head><body>{html}</body></html>"""
|
100 |
+
return {"html": html, "messages": state["messages"] + [{"role": "software_engineer", "content": html}]}
|
101 |
+
|
102 |
+
def qa_agent(state: AgentState, max_iter: int):
|
103 |
+
feedback = call_model(QA_PROMPT.format(html=state["html"]))
|
104 |
+
done = "APPROVED" in feedback or state["iteration"] >= max_iter
|
105 |
+
return {"feedback": feedback, "done": done, "iteration": state["iteration"] + 1,
|
106 |
+
"messages": state["messages"] + [{"role": "qa", "content": feedback}]}
|
107 |
+
|
108 |
+
def generate_ui(user_request: str, max_iter: int):
|
109 |
+
state = {"messages": [{"role": "user", "content": user_request}], "design_specs": "", "html": "",
|
110 |
+
"css": "", "feedback": "", "iteration": 0, "done": False, "timings": {}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
workflow = StateGraph(AgentState)
|
113 |
+
workflow.add_node("product_manager", lambda s: time_agent(product_manager_agent, s, "product_manager"))
|
114 |
+
workflow.add_node("project_manager", lambda s: time_agent(project_manager_agent, s, "project_manager"))
|
115 |
+
workflow.add_node("software_architect", lambda s: time_agent(software_architect_agent, s, "software_architect"))
|
116 |
+
workflow.add_node("software_engineer", lambda s: time_agent(engineer_agent, s, "software_engineer"))
|
117 |
+
workflow.add_node("qa", lambda s: time_agent(lambda x: qa_agent(x, max_iter), s, "qa"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
workflow.add_edge("product_manager", "project_manager")
|
120 |
+
workflow.add_edge("project_manager", "software_architect")
|
121 |
+
workflow.add_edge("software_architect", "software_engineer")
|
122 |
+
workflow.add_edge("software_engineer", "qa")
|
123 |
+
workflow.add_conditional_edges("qa", lambda s: END if s["done"] else "software_engineer")
|
124 |
workflow.set_entry_point("product_manager")
|
125 |
|
126 |
app = workflow.compile()
|
127 |
+
total_start = time.time()
|
128 |
final_state = app.invoke(state)
|
129 |
+
return final_state["html"], final_state, time.time() - total_start
|
130 |
|
131 |
def main():
|
132 |
+
st.set_page_config(page_title="Multi-Agent Collaboration", layout="wide")
|
133 |
+
st.title("π€ Multi-Agent Collaboration")
|
134 |
+
with st.sidebar:
|
135 |
+
max_iter = st.slider("Max QA Iterations", 1, 5, 2)
|
136 |
+
|
137 |
+
prompt = st.text_area("π Describe the UI you want:", "A coffee shop landing page with hero, menu, and contact form.", height=150)
|
138 |
+
|
139 |
if st.button("π Generate UI"):
|
140 |
with st.spinner("Agents working..."):
|
141 |
+
html, final_state, total_time = generate_ui(prompt, max_iter)
|
142 |
+
st.success("β
UI Generated Successfully!")
|
143 |
+
st.components.v1.html(html, height=600, scrolling=True)
|
144 |
+
|
145 |
+
st.subheader("π
Download HTML")
|
146 |
+
b64 = base64.b64encode(html.encode()).decode()
|
147 |
+
st.markdown(f'<a href="data:file/html;base64,{b64}" download="ui.html">Download HTML</a>', unsafe_allow_html=True)
|
148 |
+
|
149 |
+
st.subheader("π§ Agent Communication Log")
|
150 |
+
history_text = ""
|
151 |
+
for msg in final_state["messages"]:
|
152 |
+
role = msg["role"].replace("_", " ").title()
|
153 |
+
content = msg["content"]
|
154 |
+
history_text += f"---\n{role}:\n{content}\n\n"
|
155 |
+
st.text_area("Agent Dialogue", value=history_text, height=300)
|
156 |
+
|
157 |
+
b64_hist = base64.b64encode(history_text.encode()).decode()
|
158 |
+
st.markdown(
|
159 |
+
f'<a href="data:file/txt;base64,{b64_hist}" download="agent_communication.txt" '
|
160 |
+
'style="padding: 0.4em 1em; background: #4CAF50; color: white; border-radius: 0.3em; text-decoration: none;">'
|
161 |
+
'π
Download Communication Log</a>',
|
162 |
+
unsafe_allow_html=True
|
163 |
+
)
|
164 |
+
|
165 |
+
st.subheader("π Performance")
|
166 |
+
st.write(f"β±οΈ Total Time: {total_time:.2f} seconds")
|
167 |
+
st.write(f"π Iterations: {final_state['iteration']}")
|
168 |
+
for stage in ["product_manager", "project_manager", "software_architect", "software_engineer", "qa"]:
|
169 |
+
st.write(f"π€ {stage.title().replace('_', ' ')} Time: {final_state['timings'].get(stage, 0):.2f}s")
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
+
main()
|