sparanoid commited on
Commit
c8318dc
·
unverified ·
1 Parent(s): fe9b7fa

feat: init repo

Browse files
83_epochs.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b2d02f32e9df815c473e775187a5cbcc3fe60412681ec462d13570d7191b5e3
3
+ size 221251405
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Milky Green Sovits
3
- emoji: 🐨
4
- colorFrom: indigo
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.6
8
  app_file: app.py
 
1
  ---
2
+ title: Milky Green SOVITS
3
+ emoji: 🍵
4
+ colorFrom: cyan
5
+ colorTo: green
6
  sdk: gradio
7
  sdk_version: 3.6
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import gradio as gr
4
+ import soundfile
5
+ import torch
6
+
7
+ import infer_tool
8
+
9
+ convert_cnt = [0]
10
+ dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+ # model_name = "83_epochs.pth"
12
+ model_name = "mg_1255_epochs_v0.0.6.pth"
13
+ config_name = "milky_green.json"
14
+ net_g_ms, hubert_soft, feature_input, hps_ms = infer_tool.load_model(f"{model_name}", f"configs/{config_name}")
15
+
16
+ # 获取config参数
17
+ target_sample = hps_ms.data.sampling_rate
18
+ spk_dict = {
19
+ "明前奶绿": 0,
20
+ "云灏": 2,
21
+ "即霜": 3,
22
+ "奕兰秋": 4
23
+ }
24
+
25
+ def list_models():
26
+ global model_name
27
+ res = []
28
+ dir = os.getcwd()
29
+ for f in os.listdir(dir):
30
+ if(f.startswith("D_")):
31
+ continue
32
+ if(f.endswith(".pth")):
33
+ res.append(f)
34
+ if len(f) >= len(model_name):
35
+ model_name = f
36
+ return res
37
+
38
+ def vc_fn(sid, audio_record, audio_upload, tran):
39
+ print(sid, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
40
+ if audio_upload is not None:
41
+ audio_path = audio_upload
42
+ elif audio_record is not None:
43
+ audio_path = audio_record
44
+ else:
45
+ return "你需要上传wav文件或使用网页内置的录音!", None
46
+
47
+ audio, sampling_rate = infer_tool.format_wav(audio_path, target_sample)
48
+ duration = audio.shape[0] / sampling_rate
49
+ if duration > 600:
50
+ return "请上传小于600s的音频,需要转换长音频请使用colab", None
51
+
52
+ o_audio, out_sr = infer_tool.infer(audio_path, spk_dict[sid], tran, net_g_ms, hubert_soft, feature_input)
53
+ out_path = f"./out_temp.wav"
54
+ soundfile.write(out_path, o_audio, target_sample)
55
+ infer_tool.f0_plt(audio_path, out_path, tran, hubert_soft, feature_input)
56
+ mistake, var = infer_tool.calc_error(audio_path, out_path, tran, feature_input)
57
+ return f"半音偏差:{mistake}\n半音方差:{var}", (
58
+ target_sample, o_audio), gr.Image.update("temp.jpg")
59
+
60
+ def change_model(model):
61
+ global model_name
62
+ global net_g_ms
63
+ global hubert_soft
64
+ global feature_input
65
+ global hps_ms
66
+ model_name = model
67
+ net_g_ms, hubert_soft, feature_input, hps_ms = infer_tool.load_model(f"{model_name}", f"configs/{config_name}")
68
+ return "载入模型:"+model_name
69
+
70
+ available_models = list_models()
71
+
72
+ app = gr.Blocks()
73
+ with app:
74
+ with gr.Tabs():
75
+ with gr.TabItem("Basic"):
76
+ gr.Markdown(value="""
77
+ 本模型为[sovits_f0](https://huggingface.co/spaces/innnky/nyaru-svc2.0-advanced)魔改。含AI奶绿(aka. [明前奶绿](https://space.bilibili.com/2132180406))音色,支持**60s以内**的**无伴奏**wav、mp3(单声道)格式,或使用**网页内置**的录音(二选一)
78
+
79
+ 转换效果取决于源音频语气、节奏是否与目标音色相近,以及音域是否超出目标音色音域范围
80
+
81
+ 奶绿高音数据效果稍差,一些音高过高的需要考虑降调
82
+
83
+ 该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc),如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
84
+
85
+ """)
86
+ model_selected = gr.Dropdown(choices=available_models, label = "模型", value=model_name)
87
+ current_model_text = gr.Markdown("")
88
+ model_selected.change(change_model, inputs=[model_selected], outputs=[current_model_text])
89
+ speaker_id = gr.Dropdown(label="音色", choices=['明前奶绿', '云灏', '即霜', "奕兰秋"], value="明前奶绿")
90
+ record_input = gr.Audio(source="microphone", label="录制你的声音", type="filepath", elem_id="audio_inputs")
91
+ upload_input = gr.Audio(source="upload", label="上传音频(长度小于60秒)", type="filepath",
92
+ elem_id="audio_inputs")
93
+ vc_transform = gr.Number(label="升降半音(整数,可以正负,半音数量,升高八度就是12)", value=0)
94
+ vc_submit = gr.Button("转换", variant="primary")
95
+ out_audio = gr.Audio(label="Output Audio")
96
+ gr.Markdown(value="""
97
+ 输出信息为音高平均偏差半音数量,体现转换音频的跑调情况(一般平均小于0.5个半音)
98
+ """)
99
+ out_message = gr.Textbox(label="跑调误差信息")
100
+ gr.Markdown(value="""f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
101
+
102
+ 若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
103
+
104
+ """)
105
+ f0_image = gr.Image(label="f0曲线")
106
+ vc_submit.click(vc_fn, [speaker_id, record_input, upload_input, vc_transform],
107
+ [out_message, out_audio, f0_image])
108
+ with gr.TabItem("使用说明"):
109
+ gr.Markdown(value="""
110
+ 0、合集:https://github.com/IceKyrin/sovits_guide/blob/main/README.md
111
+
112
+ 1、仅支持sovit_f0(sovits2.0)模型
113
+
114
+ 2、自行下载hubert-soft-0d54a1f4.pt改名为hubert.pt放置于pth文件夹下(已经下好了)
115
+ https://github.com/bshall/hubert/releases/tag/v0.1
116
+
117
+ 3、pth文件夹下放置sovits2.0的模型
118
+
119
+ 4、与模型配套的xxx.json,需有speaker项——人物列表
120
+
121
+ 5、放无伴奏的音频、或网页内置录音,不要放奇奇怪怪的格式
122
+
123
+ 6、仅供交流使用,不对用户行为负责
124
+
125
+ """)
126
+
127
+ app.launch()
attentions.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as t_func
6
+
7
+ import commons
8
+ from modules import LayerNorm
9
+
10
+
11
+ class Encoder(nn.Module):
12
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,
13
+ **kwargs):
14
+ super().__init__()
15
+ self.hidden_channels = hidden_channels
16
+ self.filter_channels = filter_channels
17
+ self.n_heads = n_heads
18
+ self.n_layers = n_layers
19
+ self.kernel_size = kernel_size
20
+ self.p_dropout = p_dropout
21
+ self.window_size = window_size
22
+
23
+ self.drop = nn.Dropout(p_dropout)
24
+ self.attn_layers = nn.ModuleList()
25
+ self.norm_layers_1 = nn.ModuleList()
26
+ self.ffn_layers = nn.ModuleList()
27
+ self.norm_layers_2 = nn.ModuleList()
28
+ for i in range(self.n_layers):
29
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
30
+ window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(
33
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
34
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
35
+
36
+ def forward(self, x, x_mask):
37
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
38
+ x = x * x_mask
39
+ for i in range(self.n_layers):
40
+ y = self.attn_layers[i](x, x, attn_mask)
41
+ y = self.drop(y)
42
+ x = self.norm_layers_1[i](x + y)
43
+
44
+ y = self.ffn_layers[i](x, x_mask)
45
+ y = self.drop(y)
46
+ x = self.norm_layers_2[i](x + y)
47
+ x = x * x_mask
48
+ return x
49
+
50
+
51
+ class Decoder(nn.Module):
52
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.,
53
+ proximal_bias=False, proximal_init=True, **kwargs):
54
+ super().__init__()
55
+ self.hidden_channels = hidden_channels
56
+ self.filter_channels = filter_channels
57
+ self.n_heads = n_heads
58
+ self.n_layers = n_layers
59
+ self.kernel_size = kernel_size
60
+ self.p_dropout = p_dropout
61
+ self.proximal_bias = proximal_bias
62
+ self.proximal_init = proximal_init
63
+
64
+ self.drop = nn.Dropout(p_dropout)
65
+ self.self_attn_layers = nn.ModuleList()
66
+ self.norm_layers_0 = nn.ModuleList()
67
+ self.encdec_attn_layers = nn.ModuleList()
68
+ self.norm_layers_1 = nn.ModuleList()
69
+ self.ffn_layers = nn.ModuleList()
70
+ self.norm_layers_2 = nn.ModuleList()
71
+ for i in range(self.n_layers):
72
+ self.self_attn_layers.append(
73
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
74
+ proximal_bias=proximal_bias, proximal_init=proximal_init))
75
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
76
+ self.encdec_attn_layers.append(
77
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
78
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
79
+ self.ffn_layers.append(
80
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
81
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
82
+
83
+ def forward(self, x, x_mask, h, h_mask):
84
+ """
85
+ x: decoder input
86
+ h: encoder output
87
+ """
88
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
89
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
90
+ x = x * x_mask
91
+ for i in range(self.n_layers):
92
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
93
+ y = self.drop(y)
94
+ x = self.norm_layers_0[i](x + y)
95
+
96
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
97
+ y = self.drop(y)
98
+ x = self.norm_layers_1[i](x + y)
99
+
100
+ y = self.ffn_layers[i](x, x_mask)
101
+ y = self.drop(y)
102
+ x = self.norm_layers_2[i](x + y)
103
+ x = x * x_mask
104
+ return x
105
+
106
+
107
+ class MultiHeadAttention(nn.Module):
108
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True,
109
+ block_length=None, proximal_bias=False, proximal_init=False):
110
+ super().__init__()
111
+ assert channels % n_heads == 0
112
+
113
+ self.channels = channels
114
+ self.out_channels = out_channels
115
+ self.n_heads = n_heads
116
+ self.p_dropout = p_dropout
117
+ self.window_size = window_size
118
+ self.heads_share = heads_share
119
+ self.block_length = block_length
120
+ self.proximal_bias = proximal_bias
121
+ self.proximal_init = proximal_init
122
+ self.attn = None
123
+
124
+ self.k_channels = channels // n_heads
125
+ self.conv_q = nn.Conv1d(channels, channels, 1)
126
+ self.conv_k = nn.Conv1d(channels, channels, 1)
127
+ self.conv_v = nn.Conv1d(channels, channels, 1)
128
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
129
+ self.drop = nn.Dropout(p_dropout)
130
+
131
+ if window_size is not None:
132
+ n_heads_rel = 1 if heads_share else n_heads
133
+ rel_stddev = self.k_channels ** -0.5
134
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
135
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
136
+
137
+ nn.init.xavier_uniform_(self.conv_q.weight)
138
+ nn.init.xavier_uniform_(self.conv_k.weight)
139
+ nn.init.xavier_uniform_(self.conv_v.weight)
140
+ if proximal_init:
141
+ with torch.no_grad():
142
+ self.conv_k.weight.copy_(self.conv_q.weight)
143
+ self.conv_k.bias.copy_(self.conv_q.bias)
144
+
145
+ def forward(self, x, c, attn_mask=None):
146
+ q = self.conv_q(x)
147
+ k = self.conv_k(c)
148
+ v = self.conv_v(c)
149
+
150
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
151
+
152
+ x = self.conv_o(x)
153
+ return x
154
+
155
+ def attention(self, query, key, value, mask=None):
156
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
157
+ b, d, t_s, t_t = (*key.size(), query.size(2))
158
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
159
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
160
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
161
+
162
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
163
+ if self.window_size is not None:
164
+ assert t_s == t_t, "Relative attention is only available for self-attention."
165
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
166
+ rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
167
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
168
+ scores = scores + scores_local
169
+ if self.proximal_bias:
170
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
171
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
172
+ if mask is not None:
173
+ scores = scores.masked_fill(mask == 0, -1e4)
174
+ if self.block_length is not None:
175
+ assert t_s == t_t, "Local attention is only available for self-attention."
176
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
177
+ scores = scores.masked_fill(block_mask == 0, -1e4)
178
+ p_attn = t_func.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
179
+ p_attn = self.drop(p_attn)
180
+ output = torch.matmul(p_attn, value)
181
+ if self.window_size is not None:
182
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
183
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
184
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
185
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
186
+ return output, p_attn
187
+
188
+ def _matmul_with_relative_values(self, x, y):
189
+ """
190
+ x: [b, h, l, m]
191
+ y: [h or 1, m, d]
192
+ ret: [b, h, l, d]
193
+ """
194
+ ret = torch.matmul(x, y.unsqueeze(0))
195
+ return ret
196
+
197
+ def _matmul_with_relative_keys(self, x, y):
198
+ """
199
+ x: [b, h, l, d]
200
+ y: [h or 1, m, d]
201
+ ret: [b, h, l, m]
202
+ """
203
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
204
+ return ret
205
+
206
+ def _get_relative_embeddings(self, relative_embeddings, length):
207
+ max_relative_position = 2 * self.window_size + 1
208
+ # Pad first before slice to avoid using cond ops.
209
+ pad_length = max(length - (self.window_size + 1), 0)
210
+ slice_start_position = max((self.window_size + 1) - length, 0)
211
+ slice_end_position = slice_start_position + 2 * length - 1
212
+ if pad_length > 0:
213
+ padded_relative_embeddings = t_func.pad(
214
+ relative_embeddings,
215
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
216
+ else:
217
+ padded_relative_embeddings = relative_embeddings
218
+ used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
219
+ return used_relative_embeddings
220
+
221
+ def _relative_position_to_absolute_position(self, x):
222
+ """
223
+ x: [b, h, l, 2*l-1]
224
+ ret: [b, h, l, l]
225
+ """
226
+ batch, heads, length, _ = x.size()
227
+ # Concat columns of pad to shift from relative to absolute indexing.
228
+ x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
229
+
230
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
231
+ x_flat = x.view([batch, heads, length * 2 * length])
232
+ x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
233
+
234
+ # Reshape and slice out the padded elements.
235
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:]
236
+ return x_final
237
+
238
+ def _absolute_position_to_relative_position(self, x):
239
+ """
240
+ x: [b, h, l, l]
241
+ ret: [b, h, l, 2*l-1]
242
+ """
243
+ batch, heads, length, _ = x.size()
244
+ # padd along column
245
+ x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
246
+ x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
247
+ # add 0's in the beginning that will skew the elements after reshape
248
+ x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
249
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
250
+ return x_final
251
+
252
+ def _attention_bias_proximal(self, length):
253
+ """Bias for self-attention to encourage attention to close positions.
254
+ Args:
255
+ length: an integer scalar.
256
+ Returns:
257
+ a Tensor with shape [1, 1, length, length]
258
+ """
259
+ r = torch.arange(length, dtype=torch.float32)
260
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
261
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
262
+
263
+
264
+ class FFN(nn.Module):
265
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None,
266
+ causal=False):
267
+ super().__init__()
268
+ self.in_channels = in_channels
269
+ self.out_channels = out_channels
270
+ self.filter_channels = filter_channels
271
+ self.kernel_size = kernel_size
272
+ self.p_dropout = p_dropout
273
+ self.activation = activation
274
+ self.causal = causal
275
+
276
+ if causal:
277
+ self.padding = self._causal_padding
278
+ else:
279
+ self.padding = self._same_padding
280
+
281
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
282
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
283
+ self.drop = nn.Dropout(p_dropout)
284
+
285
+ def forward(self, x, x_mask):
286
+ x = self.conv_1(self.padding(x * x_mask))
287
+ if self.activation == "gelu":
288
+ x = x * torch.sigmoid(1.702 * x)
289
+ else:
290
+ x = torch.relu(x)
291
+ x = self.drop(x)
292
+ x = self.conv_2(self.padding(x * x_mask))
293
+ return x * x_mask
294
+
295
+ def _causal_padding(self, x):
296
+ if self.kernel_size == 1:
297
+ return x
298
+ pad_l = self.kernel_size - 1
299
+ pad_r = 0
300
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
301
+ x = t_func.pad(x, commons.convert_pad_shape(padding))
302
+ return x
303
+
304
+ def _same_padding(self, x):
305
+ if self.kernel_size == 1:
306
+ return x
307
+ pad_l = (self.kernel_size - 1) // 2
308
+ pad_r = self.kernel_size // 2
309
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
310
+ x = t_func.pad(x, commons.convert_pad_shape(padding))
311
+ return x
commons.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch.nn import functional as t_func
5
+
6
+
7
+ def init_weights(m, mean=0.0, std=0.01):
8
+ classname = m.__class__.__name__
9
+ if classname.find("Conv") != -1:
10
+ m.weight.data.normal_(mean, std)
11
+
12
+
13
+ def get_padding(kernel_size, dilation=1):
14
+ return int((kernel_size * dilation - dilation) / 2)
15
+
16
+
17
+ def convert_pad_shape(pad_shape):
18
+ l = pad_shape[::-1]
19
+ pad_shape = [item for sublist in l for item in sublist]
20
+ return pad_shape
21
+
22
+
23
+ def intersperse(lst, item):
24
+ result = [item] * (len(lst) * 2 + 1)
25
+ result[1::2] = lst
26
+ return result
27
+
28
+
29
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
30
+ """KL(P||Q)"""
31
+ kl = (logs_q - logs_p) - 0.5
32
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2. * logs_q)
33
+ return kl
34
+
35
+
36
+ def rand_gumbel(shape):
37
+ """Sample from the Gumbel distribution, protect from overflows."""
38
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
39
+ return -torch.log(-torch.log(uniform_samples))
40
+
41
+
42
+ def rand_gumbel_like(x):
43
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
44
+ return g
45
+
46
+
47
+ def slice_segments(x, ids_str, segment_size=4):
48
+ ret = torch.zeros_like(x[:, :, :segment_size])
49
+ for i in range(x.size(0)):
50
+ idx_str = ids_str[i]
51
+ idx_end = idx_str + segment_size
52
+ ret[i] = x[i, :, idx_str:idx_end]
53
+ return ret
54
+
55
+
56
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
57
+ b, d, t = x.size()
58
+ if x_lengths is None:
59
+ x_lengths = t
60
+ ids_str_max = x_lengths - segment_size + 1
61
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
62
+ ret = slice_segments(x, ids_str, segment_size)
63
+ return ret, ids_str
64
+
65
+
66
+ def get_timing_signal_1d(
67
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
+ position = torch.arange(length, dtype=torch.float)
69
+ num_timescales = channels // 2
70
+ log_timescale_increment = (
71
+ math.log(float(max_timescale) / float(min_timescale)) /
72
+ (num_timescales - 1))
73
+ inv_timescales = min_timescale * torch.exp(
74
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
75
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
76
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
77
+ signal = t_func.pad(signal, [0, 0, 0, channels % 2])
78
+ signal = signal.view(1, channels, length)
79
+ return signal
80
+
81
+
82
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
83
+ b, channels, length = x.size()
84
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
85
+ return x + signal.to(dtype=x.dtype, device=x.device)
86
+
87
+
88
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
89
+ b, channels, length = x.size()
90
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
92
+
93
+
94
+ def subsequent_mask(length):
95
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
96
+ return mask
97
+
98
+
99
+ @torch.jit.script
100
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
101
+ n_channels_int = n_channels[0]
102
+ in_act = input_a + input_b
103
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
104
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
105
+ acts = t_act * s_act
106
+ return acts
107
+
108
+
109
+ def convert_pad_shape(pad_shape):
110
+ l = pad_shape[::-1]
111
+ pad_shape = [item for sublist in l for item in sublist]
112
+ return pad_shape
113
+
114
+
115
+ def shift_1d(x):
116
+ x = t_func.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
117
+ return x
118
+
119
+
120
+ def sequence_mask(length, max_length=None):
121
+ if max_length is None:
122
+ max_length = length.max()
123
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
124
+ return x.unsqueeze(0) < length.unsqueeze(1)
125
+
126
+
127
+ def generate_path(duration, mask):
128
+ """
129
+ duration: [b, 1, t_x]
130
+ mask: [b, 1, t_y, t_x]
131
+ """
132
+ device = duration.device
133
+
134
+ b, _, t_y, t_x = mask.shape
135
+ cum_duration = torch.cumsum(duration, -1)
136
+
137
+ cum_duration_flat = cum_duration.view(b * t_x)
138
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
139
+ path = path.view(b, t_x, t_y)
140
+ path = path - t_func.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
141
+ path = path.unsqueeze(1).transpose(2, 3) * mask
142
+ return path
143
+
144
+
145
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
146
+ if isinstance(parameters, torch.Tensor):
147
+ parameters = [parameters]
148
+ parameters = list(filter(lambda para: para.grad is not None, parameters))
149
+ norm_type = float(norm_type)
150
+ if clip_value is not None:
151
+ clip_value = float(clip_value)
152
+
153
+ total_norm = 0
154
+ for p in parameters:
155
+ param_norm = p.grad.data.norm(norm_type)
156
+ total_norm += param_norm.item() ** norm_type
157
+ if clip_value is not None:
158
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
159
+ total_norm = total_norm ** (1. / norm_type)
160
+ return total_norm
configs/milky_green.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 2000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-9,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 8192,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "/root/sovits/filelist/train.txt",
24
+ "validation_files": "/root/sovits/filelist/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 22050,
30
+ "filter_length": 1024,
31
+ "hop_length": 256,
32
+ "win_length": 1024,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 8,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 256,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "nyaru",
90
+ "taffy",
91
+ "yunhao",
92
+ "jishuang",
93
+ "yilanqiu",
94
+ "opencpop"
95
+ ]
96
+ }
configs/nyarumul.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 2000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-9,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 8192,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "/root/sovits/filelist/train.txt",
24
+ "validation_files": "/root/sovits/filelist/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 22050,
30
+ "filter_length": 1024,
31
+ "hop_length": 256,
32
+ "win_length": 1024,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 8,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 256,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "nyaru",
90
+ "taffy",
91
+ "yunhao",
92
+ "jishuang",
93
+ "yilanqiu",
94
+ "opencpop"
95
+ ]
96
+ }
configs/sovits_pre.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 2000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-9,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "/root/sovits/filelist/train.txt",
24
+ "validation_files": "/root/sovits/filelist/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 44100,
30
+ "filter_length": 2048,
31
+ "hop_length": 512,
32
+ "win_length": 2048,
33
+ "n_mel_channels": 128,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 4,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 256,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 4,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "yilanqiu",
90
+ "opencpop",
91
+ "yunhao",
92
+ "jishuang"
93
+ ]
94
+ }
configs/yilanqiu.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 2000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-9,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 8192,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "/root/content/qiu/train.txt",
24
+ "validation_files": "/root/content/qiu/val.txt",
25
+ "text_cleaners": [
26
+ "english_cleaners2"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 22050,
30
+ "filter_length": 1024,
31
+ "hop_length": 256,
32
+ "win_length": 1024,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 3,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 256,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "maolei",
90
+ "x",
91
+ "yilanqiu"
92
+ ]
93
+ }
data_utils.py ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+ from mel_processing import spectrogram_torch
8
+
9
+ from utils import load_wav_to_torch, load_filepaths_and_text
10
+
11
+
12
+ def dropout1d(myarray, ratio=0.5):
13
+ indices = np.random.choice(np.arange(myarray.size), replace=False,
14
+ size=int(myarray.size * ratio))
15
+ myarray[indices] = 0
16
+ return myarray
17
+
18
+
19
+ class TextAudioLoader(torch.utils.data.Dataset):
20
+ """
21
+ 1) loads audio, text pairs
22
+ 2) normalizes text and converts them to sequences of integers
23
+ 3) computes spectrograms from audio files.
24
+ """
25
+
26
+ def __init__(self, audiopaths_and_text, hparams):
27
+ self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
28
+ self.text_cleaners = hparams.text_cleaners
29
+ self.max_wav_value = hparams.max_wav_value
30
+ self.sampling_rate = hparams.sampling_rate
31
+ self.filter_length = hparams.filter_length
32
+ self.hop_length = hparams.hop_length
33
+ self.win_length = hparams.win_length
34
+ self.sampling_rate = hparams.sampling_rate
35
+
36
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
37
+
38
+ self.add_blank = hparams.add_blank
39
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
40
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
41
+
42
+ random.seed(1234)
43
+ random.shuffle(self.audiopaths_and_text)
44
+ self._filter()
45
+
46
+ def _filter(self):
47
+ """
48
+ Filter text & store spec lengths
49
+ """
50
+ # Store spectrogram lengths for Bucketing
51
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
52
+ # spec_length = wav_length // hop_length
53
+ lengths = []
54
+ for audiopath, text, pitch in self.audiopaths_and_text:
55
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
56
+ self.lengths = lengths
57
+
58
+ def get_audio_text_pair(self, audiopath_and_text):
59
+ # separate filename and text
60
+ audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1], audiopath_and_text[2]
61
+ text = self.get_text(text)
62
+ spec, wav = self.get_audio(audiopath)
63
+ pitch = self.get_pitch(pitch)
64
+ return text, spec, wav, pitch
65
+
66
+ def get_pitch(self, pitch):
67
+
68
+ return torch.LongTensor(np.load(pitch))
69
+
70
+ def get_audio(self, filename):
71
+ audio, sampling_rate = load_wav_to_torch(filename)
72
+ if sampling_rate != self.sampling_rate:
73
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
74
+ sampling_rate, self.sampling_rate))
75
+ audio_norm = audio / self.max_wav_value
76
+ audio_norm = audio_norm.unsqueeze(0)
77
+ spec_filename = filename.replace(".wav", ".spec.pt")
78
+ if os.path.exists(spec_filename):
79
+ spec = torch.load(spec_filename)
80
+ else:
81
+ spec = spectrogram_torch(audio_norm, self.filter_length,
82
+ self.sampling_rate, self.hop_length, self.win_length,
83
+ center=False)
84
+ spec = torch.squeeze(spec, 0)
85
+ torch.save(spec, spec_filename)
86
+ return spec, audio_norm
87
+
88
+ def get_text(self, text):
89
+ soft = np.load(text)
90
+ text_norm = torch.FloatTensor(soft)
91
+ return text_norm
92
+
93
+ def __getitem__(self, index):
94
+ return self.get_audio_text_pair(self.audiopaths_and_text[index])
95
+
96
+ def __len__(self):
97
+ return len(self.audiopaths_and_text)
98
+
99
+
100
+ class TextAudioCollate:
101
+ """ Zero-pads model inputs and targets
102
+ """
103
+
104
+ def __init__(self, return_ids=False):
105
+ self.return_ids = return_ids
106
+
107
+ def __call__(self, batch):
108
+ """Collate's training batch from normalized text and aduio
109
+ PARAMS
110
+ ------
111
+ batch: [text_normalized, spec_normalized, wav_normalized]
112
+ """
113
+ # Right zero-pad all one-hot text sequences to max input length
114
+ _, ids_sorted_decreasing = torch.sort(
115
+ torch.LongTensor([x[1].size(1) for x in batch]),
116
+ dim=0, descending=True)
117
+
118
+ max_text_len = max([len(x[0]) for x in batch])
119
+ max_spec_len = max([x[1].size(1) for x in batch])
120
+ max_wav_len = max([x[2].size(1) for x in batch])
121
+ max_pitch_len = max([x[3].shape[0] for x in batch])
122
+ # print(batch)
123
+
124
+ text_lengths = torch.LongTensor(len(batch))
125
+ spec_lengths = torch.LongTensor(len(batch))
126
+ wav_lengths = torch.LongTensor(len(batch))
127
+
128
+ text_padded = torch.FloatTensor(len(batch), max_text_len, 256)
129
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
130
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
131
+ pitch_padded = torch.LongTensor(len(batch), max_pitch_len)
132
+
133
+ text_padded.zero_()
134
+ spec_padded.zero_()
135
+ wav_padded.zero_()
136
+ pitch_padded.zero_()
137
+ for i in range(len(ids_sorted_decreasing)):
138
+ row = batch[ids_sorted_decreasing[i]]
139
+
140
+ text = row[0]
141
+ text_padded[i, :text.size(0), :] = text
142
+ text_lengths[i] = text.size(0)
143
+
144
+ spec = row[1]
145
+ spec_padded[i, :, :spec.size(1)] = spec
146
+ spec_lengths[i] = spec.size(1)
147
+
148
+ wav = row[2]
149
+ wav_padded[i, :, :wav.size(1)] = wav
150
+ wav_lengths[i] = wav.size(1)
151
+
152
+ pitch = row[3]
153
+ pitch_padded[i, :pitch.size(0)] = pitch
154
+
155
+ if self.return_ids:
156
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing, pitch_padded
157
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded
158
+
159
+
160
+ """Multi speaker version"""
161
+
162
+
163
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
164
+ """
165
+ 1) loads audio, speaker_id, text pairs
166
+ 2) normalizes text and converts them to sequences of integers
167
+ 3) computes spectrograms from audio files.
168
+ """
169
+
170
+ def __init__(self, audiopaths_sid_text, hparams):
171
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
172
+ self.text_cleaners = hparams.text_cleaners
173
+ self.max_wav_value = hparams.max_wav_value
174
+ self.sampling_rate = hparams.sampling_rate
175
+ self.filter_length = hparams.filter_length
176
+ self.hop_length = hparams.hop_length
177
+ self.win_length = hparams.win_length
178
+ self.sampling_rate = hparams.sampling_rate
179
+
180
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
181
+
182
+ self.add_blank = hparams.add_blank
183
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
184
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
185
+
186
+ random.seed(1234)
187
+ random.shuffle(self.audiopaths_sid_text)
188
+ self._filter()
189
+
190
+ def _filter(self):
191
+ """
192
+ Filter text & store spec lengths
193
+ """
194
+ # Store spectrogram lengths for Bucketing
195
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
196
+ # spec_length = wav_length // hop_length
197
+
198
+ lengths = []
199
+ for audiopath, sid, text, pitch in self.audiopaths_sid_text:
200
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
201
+ self.lengths = lengths
202
+
203
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
204
+ # separate filename, speaker_id and text
205
+ audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], \
206
+ audiopath_sid_text[3]
207
+ text = self.get_text(text)
208
+ spec, wav = self.get_audio(audiopath)
209
+ sid = self.get_sid(sid)
210
+ pitch = self.get_pitch(pitch)
211
+
212
+ return text, spec, wav, pitch, sid
213
+
214
+ def get_audio(self, filename):
215
+ audio, sampling_rate = load_wav_to_torch(filename)
216
+ if sampling_rate != self.sampling_rate:
217
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
218
+ sampling_rate, self.sampling_rate))
219
+ audio_norm = audio / self.max_wav_value
220
+ audio_norm = audio_norm.unsqueeze(0)
221
+ spec_filename = filename.replace(".wav", ".spec.pt")
222
+ if os.path.exists(spec_filename):
223
+ spec = torch.load(spec_filename)
224
+ else:
225
+ spec = spectrogram_torch(audio_norm, self.filter_length,
226
+ self.sampling_rate, self.hop_length, self.win_length,
227
+ center=False)
228
+ spec = torch.squeeze(spec, 0)
229
+ torch.save(spec, spec_filename)
230
+ return spec, audio_norm
231
+
232
+ def get_text(self, text):
233
+ soft = np.load(text)
234
+ text_norm = torch.FloatTensor(soft)
235
+ return text_norm
236
+
237
+ def get_pitch(self, pitch):
238
+ return torch.LongTensor(np.load(pitch))
239
+
240
+ def get_sid(self, sid):
241
+ sid = torch.LongTensor([int(sid)])
242
+ return sid
243
+
244
+ def __getitem__(self, index):
245
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
246
+
247
+ def __len__(self):
248
+ return len(self.audiopaths_sid_text)
249
+
250
+
251
+ class TextAudioSpeakerCollate:
252
+ """ Zero-pads model inputs and targets
253
+ """
254
+
255
+ def __init__(self, return_ids=False):
256
+ self.return_ids = return_ids
257
+
258
+ def __call__(self, batch):
259
+ """Collate's training batch from normalized text, audio and speaker identities
260
+ PARAMS
261
+ ------
262
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
263
+ """
264
+ # Right zero-pad all one-hot text sequences to max input length
265
+ _, ids_sorted_decreasing = torch.sort(
266
+ torch.LongTensor([x[1].size(1) for x in batch]),
267
+ dim=0, descending=True)
268
+
269
+ max_text_len = max([len(x[0]) for x in batch])
270
+ max_spec_len = max([x[1].size(1) for x in batch])
271
+ max_wav_len = max([x[2].size(1) for x in batch])
272
+ max_pitch_len = max([x[3].shape[0] for x in batch])
273
+
274
+ text_lengths = torch.LongTensor(len(batch))
275
+ spec_lengths = torch.LongTensor(len(batch))
276
+ wav_lengths = torch.LongTensor(len(batch))
277
+ sid = torch.LongTensor(len(batch))
278
+
279
+ text_padded = torch.FloatTensor(len(batch), max_text_len, 256)
280
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
281
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
282
+ pitch_padded = torch.LongTensor(len(batch), max_pitch_len)
283
+
284
+ text_padded.zero_()
285
+ spec_padded.zero_()
286
+ wav_padded.zero_()
287
+ pitch_padded.zero_()
288
+
289
+ for i in range(len(ids_sorted_decreasing)):
290
+ row = batch[ids_sorted_decreasing[i]]
291
+
292
+ text = row[0]
293
+ text_padded[i, :text.size(0)] = text
294
+ text_lengths[i] = text.size(0)
295
+
296
+ spec = row[1]
297
+ spec_padded[i, :, :spec.size(1)] = spec
298
+ spec_lengths[i] = spec.size(1)
299
+
300
+ wav = row[2]
301
+ wav_padded[i, :, :wav.size(1)] = wav
302
+ wav_lengths[i] = wav.size(1)
303
+
304
+ pitch = row[3]
305
+ pitch_padded[i, :pitch.size(0)] = pitch
306
+
307
+ sid[i] = row[4]
308
+
309
+ if self.return_ids:
310
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
311
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid
312
+
313
+
314
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
315
+ """
316
+ Maintain similar input lengths in a batch.
317
+ Length groups are specified by boundaries.
318
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
319
+
320
+ It removes samples which are not included in the boundaries.
321
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
322
+ """
323
+
324
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
325
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
326
+ self.lengths = dataset.lengths
327
+ self.batch_size = batch_size
328
+ self.boundaries = boundaries
329
+
330
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
331
+ self.total_size = sum(self.num_samples_per_bucket)
332
+ self.num_samples = self.total_size // self.num_replicas
333
+
334
+ def _create_buckets(self):
335
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
336
+ for i in range(len(self.lengths)):
337
+ length = self.lengths[i]
338
+ idx_bucket = self._bisect(length)
339
+ if idx_bucket != -1:
340
+ buckets[idx_bucket].append(i)
341
+
342
+ for i in range(len(buckets) - 1, 0, -1):
343
+ if len(buckets[i]) == 0:
344
+ buckets.pop(i)
345
+ self.boundaries.pop(i + 1)
346
+
347
+ num_samples_per_bucket = []
348
+ for i in range(len(buckets)):
349
+ len_bucket = len(buckets[i])
350
+ total_batch_size = self.num_replicas * self.batch_size
351
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
352
+ num_samples_per_bucket.append(len_bucket + rem)
353
+ return buckets, num_samples_per_bucket
354
+
355
+ def __iter__(self):
356
+ # deterministically shuffle based on epoch
357
+ g = torch.Generator()
358
+ g.manual_seed(self.epoch)
359
+
360
+ indices = []
361
+ if self.shuffle:
362
+ for bucket in self.buckets:
363
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
364
+ else:
365
+ for bucket in self.buckets:
366
+ indices.append(list(range(len(bucket))))
367
+
368
+ batches = []
369
+ for i in range(len(self.buckets)):
370
+ bucket = self.buckets[i]
371
+ len_bucket = len(bucket)
372
+ ids_bucket = indices[i]
373
+ num_samples_bucket = self.num_samples_per_bucket[i]
374
+
375
+ # add extra samples to make it evenly divisible
376
+ rem = num_samples_bucket - len_bucket
377
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
378
+
379
+ # subsample
380
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
381
+
382
+ # batching
383
+ for j in range(len(ids_bucket) // self.batch_size):
384
+ batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
385
+ batches.append(batch)
386
+
387
+ if self.shuffle:
388
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
389
+ batches = [batches[i] for i in batch_ids]
390
+ self.batches = batches
391
+
392
+ assert len(self.batches) * self.batch_size == self.num_samples
393
+ return iter(self.batches)
394
+
395
+ def _bisect(self, x, lo=0, hi=None):
396
+ if hi is None:
397
+ hi = len(self.boundaries) - 1
398
+
399
+ if hi > lo:
400
+ mid = (hi + lo) // 2
401
+ if self.boundaries[mid] < x <= self.boundaries[mid + 1]:
402
+ return mid
403
+ elif x <= self.boundaries[mid]:
404
+ return self._bisect(x, lo, mid)
405
+ else:
406
+ return self._bisect(x, mid + 1, hi)
407
+ else:
408
+ return -1
409
+
410
+ def __len__(self):
411
+ return self.num_samples // self.batch_size
hubert.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649
3
+ size 378435957
hubert_model.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
218
+ hubert = HubertSoft()
219
+ checkpoint = torch.load(path)
220
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
221
+ hubert.load_state_dict(checkpoint)
222
+ hubert.eval().to(dev)
223
+ return hubert
infer_tool.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import time
4
+
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import torch
8
+ import torchaudio
9
+
10
+ import hubert_model
11
+ import utils
12
+ from models import SynthesizerTrn
13
+ from preprocess_wave import FeatureInput
14
+
15
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
16
+ dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+
18
+
19
+ def timeit(func):
20
+ def run(*args, **kwargs):
21
+ t = time.time()
22
+ res = func(*args, **kwargs)
23
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
24
+ return res
25
+
26
+ return run
27
+
28
+
29
+ def get_end_file(dir_path, end):
30
+ file_lists = []
31
+ for root, dirs, files in os.walk(dir_path):
32
+ files = [f for f in files if f[0] != '.']
33
+ dirs[:] = [d for d in dirs if d[0] != '.']
34
+ for f_file in files:
35
+ if f_file.endswith(end):
36
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
37
+ return file_lists
38
+
39
+
40
+ def load_model(model_path, config_path):
41
+ # 获取模型配置
42
+ hps_ms = utils.get_hparams_from_file(config_path)
43
+ n_g_ms = SynthesizerTrn(
44
+ 178,
45
+ hps_ms.data.filter_length // 2 + 1,
46
+ hps_ms.train.segment_size // hps_ms.data.hop_length,
47
+ n_speakers=hps_ms.data.n_speakers,
48
+ **hps_ms.model)
49
+ _ = utils.load_checkpoint(model_path, n_g_ms, None)
50
+ _ = n_g_ms.eval().to(dev)
51
+ # 加载hubert
52
+ hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0])
53
+ feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
54
+ return n_g_ms, hubert_soft, feature_input, hps_ms
55
+
56
+
57
+ def resize2d_f0(x, target_len):
58
+ source = np.array(x)
59
+ source[source < 0.001] = np.nan
60
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
61
+ source)
62
+ res = np.nan_to_num(target)
63
+ return res
64
+
65
+
66
+ def get_units(in_path, hubert_soft):
67
+ source, sr = torchaudio.load(in_path)
68
+ source = torchaudio.functional.resample(source, sr, 16000)
69
+ if len(source.shape) == 2 and source.shape[1] >= 2:
70
+ source = torch.mean(source, dim=0).unsqueeze(0)
71
+ source = source.unsqueeze(0).to(dev)
72
+ with torch.inference_mode():
73
+ units = hubert_soft.units(source)
74
+ return units
75
+
76
+
77
+ def transcribe(source_path, length, transform, feature_input):
78
+ feature_pit = feature_input.compute_f0(source_path)
79
+ feature_pit = feature_pit * 2 ** (transform / 12)
80
+ feature_pit = resize2d_f0(feature_pit, length)
81
+ coarse_pit = feature_input.coarse_f0(feature_pit)
82
+ return coarse_pit
83
+
84
+
85
+ def get_unit_pitch(in_path, tran, hubert_soft, feature_input):
86
+ soft = get_units(in_path, hubert_soft).squeeze(0).cpu().numpy()
87
+ input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input)
88
+ return soft, input_pitch
89
+
90
+
91
+ def clean_pitch(input_pitch):
92
+ num_nan = np.sum(input_pitch == 1)
93
+ if num_nan / len(input_pitch) > 0.9:
94
+ input_pitch[input_pitch != 1] = 1
95
+ return input_pitch
96
+
97
+
98
+ def plt_pitch(input_pitch):
99
+ input_pitch = input_pitch.astype(float)
100
+ input_pitch[input_pitch == 1] = np.nan
101
+ return input_pitch
102
+
103
+
104
+ def f0_to_pitch(ff):
105
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
106
+ return f0_pitch
107
+
108
+
109
+ def f0_plt(in_path, out_path, tran, hubert_soft, feature_input):
110
+ s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input)
111
+ s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input)
112
+ plt.clf()
113
+ plt.plot(plt_pitch(input_pitch), color="#66ccff")
114
+ plt.plot(plt_pitch(output_pitch), color="orange")
115
+ plt.savefig("temp.jpg")
116
+
117
+
118
+ def calc_error(in_path, out_path, tran, feature_input):
119
+ input_pitch = feature_input.compute_f0(in_path)
120
+ output_pitch = feature_input.compute_f0(out_path)
121
+ sum_y = []
122
+ if np.sum(input_pitch == 0) / len(input_pitch) > 0.9:
123
+ mistake, var_take = 0, 0
124
+ else:
125
+ for i in range(min(len(input_pitch), len(output_pitch))):
126
+ if input_pitch[i] > 0 and output_pitch[i] > 0:
127
+ sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran)))
128
+ num_y = 0
129
+ for x in sum_y:
130
+ num_y += x
131
+ len_y = len(sum_y) if len(sum_y) else 1
132
+ mistake = round(float(num_y / len_y), 2)
133
+ var_take = round(float(np.std(sum_y, ddof=1)), 2)
134
+ return mistake, var_take
135
+
136
+
137
+ def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input):
138
+ sid = torch.LongTensor([int(speaker_id)]).to(dev)
139
+ soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input)
140
+ pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev)
141
+ stn_tst = torch.FloatTensor(soft)
142
+ with torch.no_grad():
143
+ x_tst = stn_tst.unsqueeze(0).to(dev)
144
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
145
+ audio = \
146
+ net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5,
147
+ length_scale=1)[0][
148
+ 0, 0].data.float().cpu().numpy()
149
+ return audio, audio.shape[-1]
150
+
151
+
152
+ def del_temp_wav(path_data):
153
+ for i in get_end_file(path_data, "wav"): # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径
154
+ os.remove(i)
155
+
156
+
157
+ def format_wav(audio_path, tar_sample):
158
+ raw_audio, raw_sample_rate = torchaudio.load(audio_path)
159
+ if len(raw_audio.shape) == 2 and raw_audio.shape[1] >= 2:
160
+ raw_audio = torch.mean(raw_audio, dim=0).unsqueeze(0)
161
+ tar_audio = torchaudio.functional.resample(raw_audio, raw_sample_rate, tar_sample)
162
+ torchaudio.save(audio_path[:-4] + ".wav", tar_audio, tar_sample)
163
+ return tar_audio, tar_sample
164
+
165
+
166
+ def fill_a_to_b(a, b):
167
+ if len(a) < len(b):
168
+ for _ in range(0, len(b) - len(a)):
169
+ a.append(a[0])
170
+
171
+
172
+ def mkdir(paths: list):
173
+ for path in paths:
174
+ if not os.path.exists(path):
175
+ os.mkdir(path)
mg_1255_epochs_v0.0.6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df8d8c99b7e1885d771f66d972f31c2d2d74b7d582f3501ae8adefa298a9fbd3
3
+ size 221251405
models.py ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import math
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
7
+ from torch.nn import functional as F
8
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
+
10
+ import attentions
11
+ import commons
12
+ import modules
13
+ from commons import init_weights, get_padding
14
+
15
+
16
+ class StochasticDurationPredictor(nn.Module):
17
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
18
+ super().__init__()
19
+ filter_channels = in_channels # it needs to be removed from future version.
20
+ self.in_channels = in_channels
21
+ self.filter_channels = filter_channels
22
+ self.kernel_size = kernel_size
23
+ self.p_dropout = p_dropout
24
+ self.n_flows = n_flows
25
+ self.gin_channels = gin_channels
26
+
27
+ self.log_flow = modules.Log()
28
+ self.flows = nn.ModuleList()
29
+ self.flows.append(modules.ElementwiseAffine(2))
30
+ for i in range(n_flows):
31
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
32
+ self.flows.append(modules.Flip())
33
+
34
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
35
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
36
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
37
+ self.post_flows = nn.ModuleList()
38
+ self.post_flows.append(modules.ElementwiseAffine(2))
39
+ for i in range(4):
40
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
41
+ self.post_flows.append(modules.Flip())
42
+
43
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
44
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
45
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
46
+ if gin_channels != 0:
47
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
48
+
49
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
50
+ x = torch.detach(x)
51
+ x = self.pre(x)
52
+ if g is not None:
53
+ g = torch.detach(g)
54
+ x = x + self.cond(g)
55
+ x = self.convs(x, x_mask)
56
+ x = self.proj(x) * x_mask
57
+
58
+ if not reverse:
59
+ flows = self.flows
60
+ assert w is not None
61
+
62
+ logdet_tot_q = 0
63
+ h_w = self.post_pre(w)
64
+ h_w = self.post_convs(h_w, x_mask)
65
+ h_w = self.post_proj(h_w) * x_mask
66
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
67
+ z_q = e_q
68
+ for flow in self.post_flows:
69
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
70
+ logdet_tot_q += logdet_q
71
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
72
+ u = torch.sigmoid(z_u) * x_mask
73
+ z0 = (w - u) * x_mask
74
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
75
+ logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
76
+
77
+ logdet_tot = 0
78
+ z0, logdet = self.log_flow(z0, x_mask)
79
+ logdet_tot += logdet
80
+ z = torch.cat([z0, z1], 1)
81
+ for flow in flows:
82
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
83
+ logdet_tot = logdet_tot + logdet
84
+ nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
85
+ return nll + logq # [b]
86
+ else:
87
+ flows = list(reversed(self.flows))
88
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
89
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
90
+ for flow in flows:
91
+ z = flow(z, x_mask, g=x, reverse=reverse)
92
+ z0, z1 = torch.split(z, [1, 1], 1)
93
+ logw = z0
94
+ return logw
95
+
96
+
97
+ class DurationPredictor(nn.Module):
98
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
99
+ super().__init__()
100
+
101
+ self.in_channels = in_channels
102
+ self.filter_channels = filter_channels
103
+ self.kernel_size = kernel_size
104
+ self.p_dropout = p_dropout
105
+ self.gin_channels = gin_channels
106
+
107
+ self.drop = nn.Dropout(p_dropout)
108
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
109
+ self.norm_1 = modules.LayerNorm(filter_channels)
110
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
111
+ self.norm_2 = modules.LayerNorm(filter_channels)
112
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
113
+
114
+ if gin_channels != 0:
115
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
116
+
117
+ def forward(self, x, x_mask, g=None):
118
+ x = torch.detach(x)
119
+ if g is not None:
120
+ g = torch.detach(g)
121
+ x = x + self.cond(g)
122
+ x = self.conv_1(x * x_mask)
123
+ x = torch.relu(x)
124
+ x = self.norm_1(x)
125
+ x = self.drop(x)
126
+ x = self.conv_2(x * x_mask)
127
+ x = torch.relu(x)
128
+ x = self.norm_2(x)
129
+ x = self.drop(x)
130
+ x = self.proj(x * x_mask)
131
+ return x * x_mask
132
+
133
+
134
+ class PitchPredictor(nn.Module):
135
+ def __init__(self,
136
+ n_vocab,
137
+ out_channels,
138
+ hidden_channels,
139
+ filter_channels,
140
+ n_heads,
141
+ n_layers,
142
+ kernel_size,
143
+ p_dropout):
144
+ super().__init__()
145
+ self.n_vocab = n_vocab # 音素的个数,中文和英文不同
146
+ self.out_channels = out_channels
147
+ self.hidden_channels = hidden_channels
148
+ self.filter_channels = filter_channels
149
+ self.n_heads = n_heads
150
+ self.n_layers = n_layers
151
+ self.kernel_size = kernel_size
152
+ self.p_dropout = p_dropout
153
+
154
+ self.pitch_net = attentions.Encoder(
155
+ hidden_channels,
156
+ filter_channels,
157
+ n_heads,
158
+ n_layers,
159
+ kernel_size,
160
+ p_dropout)
161
+ self.proj = nn.Conv1d(hidden_channels, 1, 1)
162
+
163
+ def forward(self, x, x_mask):
164
+ pitch_embedding = self.pitch_net(x * x_mask, x_mask)
165
+ pitch_embedding = pitch_embedding * x_mask
166
+ pred_pitch = self.proj(pitch_embedding)
167
+ return pred_pitch, pitch_embedding
168
+
169
+
170
+ class TextEncoder(nn.Module):
171
+ def __init__(self,
172
+ n_vocab,
173
+ out_channels,
174
+ hidden_channels,
175
+ filter_channels,
176
+ n_heads,
177
+ n_layers,
178
+ kernel_size,
179
+ p_dropout):
180
+ super().__init__()
181
+ self.n_vocab = n_vocab
182
+ self.out_channels = out_channels
183
+ self.hidden_channels = hidden_channels
184
+ self.filter_channels = filter_channels
185
+ self.n_heads = n_heads
186
+ self.n_layers = n_layers
187
+ self.kernel_size = kernel_size
188
+ self.p_dropout = p_dropout
189
+
190
+ # self.emb = nn.Embedding(n_vocab, hidden_channels)
191
+ # nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
192
+ self.emb_pitch = nn.Embedding(256, hidden_channels)
193
+ nn.init.normal_(self.emb_pitch.weight, 0.0, hidden_channels ** -0.5)
194
+
195
+ self.encoder = attentions.Encoder(
196
+ hidden_channels,
197
+ filter_channels,
198
+ n_heads,
199
+ n_layers,
200
+ kernel_size,
201
+ p_dropout)
202
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
203
+
204
+ def forward(self, x, x_lengths, pitch):
205
+ # x = x.transpose(1,2)
206
+ # x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
207
+ # print(x.shape)
208
+ x = x + self.emb_pitch(pitch)
209
+ x = torch.transpose(x, 1, -1) # [b, h, t]
210
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
211
+
212
+ x = self.encoder(x * x_mask, x_mask)
213
+ stats = self.proj(x) * x_mask
214
+
215
+ m, logs = torch.split(stats, self.out_channels, dim=1)
216
+ return x, m, logs, x_mask
217
+
218
+
219
+ class ResidualCouplingBlock(nn.Module):
220
+ def __init__(self,
221
+ channels,
222
+ hidden_channels,
223
+ kernel_size,
224
+ dilation_rate,
225
+ n_layers,
226
+ n_flows=4,
227
+ gin_channels=0):
228
+ super().__init__()
229
+ self.channels = channels
230
+ self.hidden_channels = hidden_channels
231
+ self.kernel_size = kernel_size
232
+ self.dilation_rate = dilation_rate
233
+ self.n_layers = n_layers
234
+ self.n_flows = n_flows
235
+ self.gin_channels = gin_channels
236
+
237
+ self.flows = nn.ModuleList()
238
+ for i in range(n_flows):
239
+ self.flows.append(
240
+ modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
241
+ gin_channels=gin_channels, mean_only=True))
242
+ self.flows.append(modules.Flip())
243
+
244
+ def forward(self, x, x_mask, g=None, reverse=False):
245
+ if not reverse:
246
+ for flow in self.flows:
247
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
248
+ else:
249
+ for flow in reversed(self.flows):
250
+ x = flow(x, x_mask, g=g, reverse=reverse)
251
+ return x
252
+
253
+
254
+ class PosteriorEncoder(nn.Module):
255
+ def __init__(self,
256
+ in_channels,
257
+ out_channels,
258
+ hidden_channels,
259
+ kernel_size,
260
+ dilation_rate,
261
+ n_layers,
262
+ gin_channels=0):
263
+ super().__init__()
264
+ self.in_channels = in_channels
265
+ self.out_channels = out_channels
266
+ self.hidden_channels = hidden_channels
267
+ self.kernel_size = kernel_size
268
+ self.dilation_rate = dilation_rate
269
+ self.n_layers = n_layers
270
+ self.gin_channels = gin_channels
271
+
272
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
273
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
274
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
275
+
276
+ def forward(self, x, x_lengths, g=None):
277
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
278
+ x = self.pre(x) * x_mask
279
+ x = self.enc(x, x_mask, g=g)
280
+ stats = self.proj(x) * x_mask
281
+ m, logs = torch.split(stats, self.out_channels, dim=1)
282
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
283
+ return z, m, logs, x_mask
284
+
285
+
286
+ class Generator(torch.nn.Module):
287
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
288
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
289
+ super(Generator, self).__init__()
290
+ self.num_kernels = len(resblock_kernel_sizes)
291
+ self.num_upsamples = len(upsample_rates)
292
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
293
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
294
+
295
+ self.ups = nn.ModuleList()
296
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
297
+ self.ups.append(weight_norm(
298
+ ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
299
+ k, u, padding=(k - u) // 2)))
300
+
301
+ self.resblocks = nn.ModuleList()
302
+ for i in range(len(self.ups)):
303
+ ch = upsample_initial_channel // (2 ** (i + 1))
304
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
305
+ self.resblocks.append(resblock(ch, k, d))
306
+
307
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
308
+ self.ups.apply(init_weights)
309
+
310
+ if gin_channels != 0:
311
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
312
+
313
+ def forward(self, x, g=None):
314
+ x = self.conv_pre(x)
315
+ if g is not None:
316
+ x = x + self.cond(g)
317
+
318
+ for i in range(self.num_upsamples):
319
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
320
+ x = self.ups[i](x)
321
+ xs = None
322
+ for j in range(self.num_kernels):
323
+ if xs is None:
324
+ xs = self.resblocks[i * self.num_kernels + j](x)
325
+ else:
326
+ xs += self.resblocks[i * self.num_kernels + j](x)
327
+ x = xs / self.num_kernels
328
+ x = F.leaky_relu(x)
329
+ x = self.conv_post(x)
330
+ x = torch.tanh(x)
331
+
332
+ return x
333
+
334
+ def remove_weight_norm(self):
335
+ print('Removing weight norm...')
336
+ for l in self.ups:
337
+ remove_weight_norm(l)
338
+ for l in self.resblocks:
339
+ l.remove_weight_norm()
340
+
341
+
342
+ class DiscriminatorP(torch.nn.Module):
343
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
344
+ super(DiscriminatorP, self).__init__()
345
+ self.period = period
346
+ self.use_spectral_norm = use_spectral_norm
347
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
348
+ self.convs = nn.ModuleList([
349
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
350
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
351
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
352
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
353
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
354
+ ])
355
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
356
+
357
+ def forward(self, x):
358
+ fmap = []
359
+
360
+ # 1d to 2d
361
+ b, c, t = x.shape
362
+ if t % self.period != 0: # pad first
363
+ n_pad = self.period - (t % self.period)
364
+ x = F.pad(x, (0, n_pad), "reflect")
365
+ t = t + n_pad
366
+ x = x.view(b, c, t // self.period, self.period)
367
+
368
+ for l in self.convs:
369
+ x = l(x)
370
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
371
+ fmap.append(x)
372
+ x = self.conv_post(x)
373
+ fmap.append(x)
374
+ x = torch.flatten(x, 1, -1)
375
+
376
+ return x, fmap
377
+
378
+
379
+ class DiscriminatorS(torch.nn.Module):
380
+ def __init__(self, use_spectral_norm=False):
381
+ super(DiscriminatorS, self).__init__()
382
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
383
+ self.convs = nn.ModuleList([
384
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
385
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
386
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
387
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
388
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
389
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
390
+ ])
391
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
392
+
393
+ def forward(self, x):
394
+ fmap = []
395
+
396
+ for l in self.convs:
397
+ x = l(x)
398
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
399
+ fmap.append(x)
400
+ x = self.conv_post(x)
401
+ fmap.append(x)
402
+ x = torch.flatten(x, 1, -1)
403
+
404
+ return x, fmap
405
+
406
+
407
+ class MultiPeriodDiscriminator(torch.nn.Module):
408
+ def __init__(self, use_spectral_norm=False):
409
+ super(MultiPeriodDiscriminator, self).__init__()
410
+ periods = [2, 3, 5, 7, 11]
411
+
412
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
413
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
414
+ self.discriminators = nn.ModuleList(discs)
415
+
416
+ def forward(self, y, y_hat):
417
+ y_d_rs = []
418
+ y_d_gs = []
419
+ fmap_rs = []
420
+ fmap_gs = []
421
+ for i, d in enumerate(self.discriminators):
422
+ y_d_r, fmap_r = d(y)
423
+ y_d_g, fmap_g = d(y_hat)
424
+ y_d_rs.append(y_d_r)
425
+ y_d_gs.append(y_d_g)
426
+ fmap_rs.append(fmap_r)
427
+ fmap_gs.append(fmap_g)
428
+
429
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
430
+
431
+
432
+ class SynthesizerTrn(nn.Module):
433
+ """
434
+ Synthesizer for Training
435
+ """
436
+
437
+ def __init__(self,
438
+ n_vocab,
439
+ spec_channels,
440
+ segment_size,
441
+ inter_channels,
442
+ hidden_channels,
443
+ filter_channels,
444
+ n_heads,
445
+ n_layers,
446
+ kernel_size,
447
+ p_dropout,
448
+ resblock,
449
+ resblock_kernel_sizes,
450
+ resblock_dilation_sizes,
451
+ upsample_rates,
452
+ upsample_initial_channel,
453
+ upsample_kernel_sizes,
454
+ n_speakers=0,
455
+ gin_channels=0,
456
+ use_sdp=True,
457
+ **kwargs):
458
+
459
+ super().__init__()
460
+ self.n_vocab = n_vocab
461
+ self.spec_channels = spec_channels
462
+ self.inter_channels = inter_channels
463
+ self.hidden_channels = hidden_channels
464
+ self.filter_channels = filter_channels
465
+ self.n_heads = n_heads
466
+ self.n_layers = n_layers
467
+ self.kernel_size = kernel_size
468
+ self.p_dropout = p_dropout
469
+ self.resblock = resblock
470
+ self.resblock_kernel_sizes = resblock_kernel_sizes
471
+ self.resblock_dilation_sizes = resblock_dilation_sizes
472
+ self.upsample_rates = upsample_rates
473
+ self.upsample_initial_channel = upsample_initial_channel
474
+ self.upsample_kernel_sizes = upsample_kernel_sizes
475
+ self.segment_size = segment_size
476
+ self.n_speakers = n_speakers
477
+ self.gin_channels = gin_channels
478
+
479
+ self.use_sdp = use_sdp
480
+
481
+ self.enc_p = TextEncoder(n_vocab,
482
+ inter_channels,
483
+ hidden_channels,
484
+ filter_channels,
485
+ n_heads,
486
+ n_layers,
487
+ kernel_size,
488
+ p_dropout)
489
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
490
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
491
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
492
+ gin_channels=gin_channels)
493
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
494
+ # self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
495
+ # kernel_size, p_dropout)
496
+
497
+ if use_sdp:
498
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
499
+ else:
500
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
501
+
502
+ if n_speakers > 1:
503
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
504
+
505
+ def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
506
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
507
+ if self.n_speakers > 0:
508
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
509
+ else:
510
+ g = None
511
+
512
+ if self.use_sdp:
513
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
514
+ else:
515
+ logw = self.dp(x, x_mask, g=g)
516
+ w = torch.exp(logw) * x_mask * length_scale
517
+ w_ceil = torch.ceil(w)
518
+
519
+ w_ceil = w_ceil * 0 + 2
520
+ # for index in range(w_ceil.shape[2]):
521
+ # if index%4 == 0:
522
+ # w_ceil[0,0,index] = 1.0
523
+
524
+ for i in range(w_ceil.shape[2]):
525
+ sep = 1 / 0.14
526
+ if i * sep >= w_ceil.shape[2] * 2:
527
+ break
528
+ w_ceil[0, 0, int(i * sep / 2)] = 1
529
+
530
+ # print(w_ceil)
531
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
532
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
533
+
534
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
535
+
536
+ attn = commons.generate_path(w_ceil, attn_mask)
537
+
538
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
539
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
540
+ 2) # [b, t', t], [b, t, d] -> [b, d, t']
541
+
542
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
543
+
544
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
545
+ o = self.dec((z * y_mask)[:, :, :max_len], g=g)
546
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
547
+
548
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
549
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
550
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
551
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
552
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
553
+ z_p = self.flow(z, y_mask, g=g_src)
554
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
555
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
556
+ return o_hat, y_mask, (z, z_p, z_hat)
modules.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import Conv1d
6
+ from torch.nn import functional as t_func
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+
13
+ LRELU_SLOPE = 0.1
14
+
15
+
16
+ class LayerNorm(nn.Module):
17
+ def __init__(self, channels, eps=1e-5):
18
+ super().__init__()
19
+ self.channels = channels
20
+ self.eps = eps
21
+
22
+ self.gamma = nn.Parameter(torch.ones(channels))
23
+ self.beta = nn.Parameter(torch.zeros(channels))
24
+
25
+ def forward(self, x):
26
+ x = x.transpose(1, -1)
27
+ x = t_func.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
28
+ return x.transpose(1, -1)
29
+
30
+
31
+ class ConvReluNorm(nn.Module):
32
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
33
+ super().__init__()
34
+ self.in_channels = in_channels
35
+ self.hidden_channels = hidden_channels
36
+ self.out_channels = out_channels
37
+ self.kernel_size = kernel_size
38
+ self.n_layers = n_layers
39
+ self.p_dropout = p_dropout
40
+ assert n_layers > 1, "Number of layers should be larger than 0."
41
+
42
+ self.conv_layers = nn.ModuleList()
43
+ self.norm_layers = nn.ModuleList()
44
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
45
+ self.norm_layers.append(LayerNorm(hidden_channels))
46
+ self.relu_drop = nn.Sequential(
47
+ nn.ReLU(),
48
+ nn.Dropout(p_dropout))
49
+ for _ in range(n_layers - 1):
50
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
51
+ self.norm_layers.append(LayerNorm(hidden_channels))
52
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
53
+ self.proj.weight.data.zero_()
54
+ self.proj.bias.data.zero_()
55
+
56
+ def forward(self, x, x_mask):
57
+ x_org = x
58
+ for i in range(self.n_layers):
59
+ x = self.conv_layers[i](x * x_mask)
60
+ x = self.norm_layers[i](x)
61
+ x = self.relu_drop(x)
62
+ x = x_org + self.proj(x)
63
+ return x * x_mask
64
+
65
+
66
+ class DDSConv(nn.Module):
67
+ """
68
+ Dialted and Depth-Separable Convolution
69
+ """
70
+
71
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
72
+ super().__init__()
73
+ self.channels = channels
74
+ self.kernel_size = kernel_size
75
+ self.n_layers = n_layers
76
+ self.p_dropout = p_dropout
77
+
78
+ self.drop = nn.Dropout(p_dropout)
79
+ self.convs_sep = nn.ModuleList()
80
+ self.convs_1x1 = nn.ModuleList()
81
+ self.norms_1 = nn.ModuleList()
82
+ self.norms_2 = nn.ModuleList()
83
+ for i in range(n_layers):
84
+ dilation = kernel_size ** i
85
+ padding = (kernel_size * dilation - dilation) // 2
86
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
87
+ groups=channels, dilation=dilation, padding=padding
88
+ ))
89
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
90
+ self.norms_1.append(LayerNorm(channels))
91
+ self.norms_2.append(LayerNorm(channels))
92
+
93
+ def forward(self, x, x_mask, g=None):
94
+ if g is not None:
95
+ x = x + g
96
+ for i in range(self.n_layers):
97
+ y = self.convs_sep[i](x * x_mask)
98
+ y = self.norms_1[i](y)
99
+ y = t_func.gelu(y)
100
+ y = self.convs_1x1[i](y)
101
+ y = self.norms_2[i](y)
102
+ y = t_func.gelu(y)
103
+ y = self.drop(y)
104
+ x = x + y
105
+ return x * x_mask
106
+
107
+
108
+ class WN(torch.nn.Module):
109
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
110
+ super(WN, self).__init__()
111
+ assert (kernel_size % 2 == 1)
112
+ self.hidden_channels = hidden_channels
113
+ self.kernel_size = kernel_size,
114
+ self.dilation_rate = dilation_rate
115
+ self.n_layers = n_layers
116
+ self.gin_channels = gin_channels
117
+ self.p_dropout = p_dropout
118
+
119
+ self.in_layers = torch.nn.ModuleList()
120
+ self.res_skip_layers = torch.nn.ModuleList()
121
+ self.drop = nn.Dropout(p_dropout)
122
+
123
+ if gin_channels != 0:
124
+ cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
125
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
126
+
127
+ for i in range(n_layers):
128
+ dilation = dilation_rate ** i
129
+ padding = int((kernel_size * dilation - dilation) / 2)
130
+ in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size,
131
+ dilation=dilation, padding=padding)
132
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
133
+ self.in_layers.append(in_layer)
134
+
135
+ # last one is not necessary
136
+ if i < n_layers - 1:
137
+ res_skip_channels = 2 * hidden_channels
138
+ else:
139
+ res_skip_channels = hidden_channels
140
+
141
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
142
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
143
+ self.res_skip_layers.append(res_skip_layer)
144
+
145
+ def forward(self, x, x_mask, g=None, **kwargs):
146
+ output = torch.zeros_like(x)
147
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
148
+
149
+ if g is not None:
150
+ g = self.cond_layer(g)
151
+
152
+ for i in range(self.n_layers):
153
+ x_in = self.in_layers[i](x)
154
+ if g is not None:
155
+ cond_offset = i * 2 * self.hidden_channels
156
+ g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
157
+ else:
158
+ g_l = torch.zeros_like(x_in)
159
+
160
+ acts = commons.fused_add_tanh_sigmoid_multiply(
161
+ x_in,
162
+ g_l,
163
+ n_channels_tensor)
164
+ acts = self.drop(acts)
165
+
166
+ res_skip_acts = self.res_skip_layers[i](acts)
167
+ if i < self.n_layers - 1:
168
+ res_acts = res_skip_acts[:, :self.hidden_channels, :]
169
+ x = (x + res_acts) * x_mask
170
+ output = output + res_skip_acts[:, self.hidden_channels:, :]
171
+ else:
172
+ output = output + res_skip_acts
173
+ return output * x_mask
174
+
175
+ def remove_weight_norm(self):
176
+ if self.gin_channels != 0:
177
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
178
+ for l in self.in_layers:
179
+ torch.nn.utils.remove_weight_norm(l)
180
+ for l in self.res_skip_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
+
183
+
184
+ class ResBlock1(torch.nn.Module):
185
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
186
+ super(ResBlock1, self).__init__()
187
+ self.convs1 = nn.ModuleList([
188
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
189
+ padding=get_padding(kernel_size, dilation[0]))),
190
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
191
+ padding=get_padding(kernel_size, dilation[1]))),
192
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
193
+ padding=get_padding(kernel_size, dilation[2])))
194
+ ])
195
+ self.convs1.apply(init_weights)
196
+
197
+ self.convs2 = nn.ModuleList([
198
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
199
+ padding=get_padding(kernel_size, 1))),
200
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201
+ padding=get_padding(kernel_size, 1))),
202
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203
+ padding=get_padding(kernel_size, 1)))
204
+ ])
205
+ self.convs2.apply(init_weights)
206
+
207
+ def forward(self, x, x_mask=None):
208
+ for c1, c2 in zip(self.convs1, self.convs2):
209
+ xt = t_func.leaky_relu(x, LRELU_SLOPE)
210
+ if x_mask is not None:
211
+ xt = xt * x_mask
212
+ xt = c1(xt)
213
+ xt = t_func.leaky_relu(xt, LRELU_SLOPE)
214
+ if x_mask is not None:
215
+ xt = xt * x_mask
216
+ xt = c2(xt)
217
+ x = xt + x
218
+ if x_mask is not None:
219
+ x = x * x_mask
220
+ return x
221
+
222
+ def remove_weight_norm(self):
223
+ for l in self.convs1:
224
+ remove_weight_norm(l)
225
+ for l in self.convs2:
226
+ remove_weight_norm(l)
227
+
228
+
229
+ class ResBlock2(torch.nn.Module):
230
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
231
+ super(ResBlock2, self).__init__()
232
+ self.convs = nn.ModuleList([
233
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
234
+ padding=get_padding(kernel_size, dilation[0]))),
235
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
236
+ padding=get_padding(kernel_size, dilation[1])))
237
+ ])
238
+ self.convs.apply(init_weights)
239
+
240
+ def forward(self, x, x_mask=None):
241
+ for c in self.convs:
242
+ xt = t_func.leaky_relu(x, LRELU_SLOPE)
243
+ if x_mask is not None:
244
+ xt = xt * x_mask
245
+ xt = c(xt)
246
+ x = xt + x
247
+ if x_mask is not None:
248
+ x = x * x_mask
249
+ return x
250
+
251
+ def remove_weight_norm(self):
252
+ for l in self.convs:
253
+ remove_weight_norm(l)
254
+
255
+
256
+ class Log(nn.Module):
257
+ def forward(self, x, x_mask, reverse=False, **kwargs):
258
+ if not reverse:
259
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
260
+ logdet = torch.sum(-y, [1, 2])
261
+ return y, logdet
262
+ else:
263
+ x = torch.exp(x) * x_mask
264
+ return x
265
+
266
+
267
+ class Flip(nn.Module):
268
+ def forward(self, x, *args, reverse=False, **kwargs):
269
+ x = torch.flip(x, [1])
270
+ if not reverse:
271
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
272
+ return x, logdet
273
+ else:
274
+ return x
275
+
276
+
277
+ class ElementwiseAffine(nn.Module):
278
+ def __init__(self, channels):
279
+ super().__init__()
280
+ self.channels = channels
281
+ self.m = nn.Parameter(torch.zeros(channels, 1))
282
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
283
+
284
+ def forward(self, x, x_mask, reverse=False, **kwargs):
285
+ if not reverse:
286
+ y = self.m + torch.exp(self.logs) * x
287
+ y = y * x_mask
288
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
289
+ return y, logdet
290
+ else:
291
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
292
+ return x
293
+
294
+
295
+ class ResidualCouplingLayer(nn.Module):
296
+ def __init__(self,
297
+ channels,
298
+ hidden_channels,
299
+ kernel_size,
300
+ dilation_rate,
301
+ n_layers,
302
+ p_dropout=0,
303
+ gin_channels=0,
304
+ mean_only=False):
305
+ assert channels % 2 == 0, "channels should be divisible by 2"
306
+ super().__init__()
307
+ self.channels = channels
308
+ self.hidden_channels = hidden_channels
309
+ self.kernel_size = kernel_size
310
+ self.dilation_rate = dilation_rate
311
+ self.n_layers = n_layers
312
+ self.half_channels = channels // 2
313
+ self.mean_only = mean_only
314
+
315
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
316
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout,
317
+ gin_channels=gin_channels)
318
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
319
+ self.post.weight.data.zero_()
320
+ self.post.bias.data.zero_()
321
+
322
+ def forward(self, x, x_mask, g=None, reverse=False):
323
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
324
+ h = self.pre(x0) * x_mask
325
+ h = self.enc(h, x_mask, g=g)
326
+ stats = self.post(h) * x_mask
327
+ if not self.mean_only:
328
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
329
+ else:
330
+ m = stats
331
+ logs = torch.zeros_like(m)
332
+
333
+ if not reverse:
334
+ x1 = m + x1 * torch.exp(logs) * x_mask
335
+ x = torch.cat([x0, x1], 1)
336
+ logdet = torch.sum(logs, [1, 2])
337
+ return x, logdet
338
+ else:
339
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
340
+ x = torch.cat([x0, x1], 1)
341
+ return x
342
+
343
+
344
+ class ConvFlow(nn.Module):
345
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
346
+ super().__init__()
347
+ self.in_channels = in_channels
348
+ self.filter_channels = filter_channels
349
+ self.kernel_size = kernel_size
350
+ self.n_layers = n_layers
351
+ self.num_bins = num_bins
352
+ self.tail_bound = tail_bound
353
+ self.half_channels = in_channels // 2
354
+
355
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
356
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
357
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
358
+ self.proj.weight.data.zero_()
359
+ self.proj.bias.data.zero_()
360
+
361
+ def forward(self, x, x_mask, g=None, reverse=False):
362
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
363
+ h = self.pre(x0)
364
+ h = self.convs(h, x_mask, g=g)
365
+ h = self.proj(h) * x_mask
366
+
367
+ b, c, t = x0.shape
368
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
369
+
370
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
371
+ unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels)
372
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
373
+
374
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
375
+ unnormalized_widths,
376
+ unnormalized_heights,
377
+ unnormalized_derivatives,
378
+ inverse=reverse,
379
+ tails='linear',
380
+ tail_bound=self.tail_bound
381
+ )
382
+
383
+ x = torch.cat([x0, x1], 1) * x_mask
384
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
385
+ if not reverse:
386
+ return x, logdet
387
+ else:
388
+ return x
preprocess_wave.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import librosa
4
+ import numpy as np
5
+ import pyworld
6
+ from scipy.io import wavfile
7
+
8
+ import utils
9
+
10
+
11
+ class FeatureInput(object):
12
+ def __init__(self, samplerate=16000, hop_size=160):
13
+ self.fs = samplerate
14
+ self.hop = hop_size
15
+
16
+ self.f0_bin = 256
17
+ self.f0_max = 1100.0
18
+ self.f0_min = 50.0
19
+ self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
20
+ self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
21
+
22
+ def compute_f0(self, path):
23
+ x, sr = librosa.load(path, sr=self.fs)
24
+ assert sr == self.fs
25
+ f0, t = pyworld.dio(
26
+ x.astype(np.double),
27
+ fs=sr,
28
+ f0_ceil=800,
29
+ frame_period=1000 * self.hop / sr,
30
+ )
31
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
32
+ for index, pitch in enumerate(f0):
33
+ f0[index] = round(pitch, 1)
34
+ return f0
35
+
36
+ # for numpy # code from diffsinger
37
+ def coarse_f0(self, f0):
38
+ f0_mel = 1127 * np.log(1 + f0 / 700)
39
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
40
+ self.f0_bin - 2
41
+ ) / (self.f0_mel_max - self.f0_mel_min) + 1
42
+
43
+ # use 0 or 1
44
+ f0_mel[f0_mel <= 1] = 1
45
+ f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
46
+ f0_coarse = np.rint(f0_mel).astype(np.int)
47
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
48
+ f0_coarse.max(),
49
+ f0_coarse.min(),
50
+ )
51
+ return f0_coarse
52
+
53
+ # for tensor # code from diffsinger
54
+ def coarse_f0_ts(self, f0):
55
+ f0_mel = 1127 * (1 + f0 / 700).log()
56
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
57
+ self.f0_bin - 2
58
+ ) / (self.f0_mel_max - self.f0_mel_min) + 1
59
+
60
+ # use 0 or 1
61
+ f0_mel[f0_mel <= 1] = 1
62
+ f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
63
+ f0_coarse = (f0_mel + 0.5).long()
64
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
65
+ f0_coarse.max(),
66
+ f0_coarse.min(),
67
+ )
68
+ return f0_coarse
69
+
70
+ def save_wav(self, wav, path):
71
+ wav *= 32767 / max(0.01, np.max(np.abs(wav))) * 0.6
72
+ wavfile.write(path, self.fs, wav.astype(np.int16))
73
+
74
+
75
+ if __name__ == "__main__":
76
+ wavPath = "./data/waves"
77
+ outPath = "./data/label"
78
+ if not os.path.exists("./data/label"):
79
+ os.mkdir("./data/label")
80
+
81
+ # define model and load checkpoint
82
+ hps = utils.get_hparams_from_file("./configs/singing_base.json")
83
+ featureInput = FeatureInput(hps.data.sampling_rate, hps.data.hop_length)
84
+ vits_file = open("./filelists/vc_file.txt", "w", encoding="utf-8")
85
+
86
+ for spks in os.listdir(wavPath):
87
+ if os.path.isdir(f"./{wavPath}/{spks}"):
88
+ os.makedirs(f"./{outPath}/{spks}")
89
+ for file in os.listdir(f"./{wavPath}/{spks}"):
90
+ if file.endswith(".wav"):
91
+ file = file[:-4]
92
+ audio_path = f"./{wavPath}/{spks}/{file}.wav"
93
+ featur_pit = featureInput.compute_f0(audio_path)
94
+ coarse_pit = featureInput.coarse_f0(featur_pit)
95
+ np.save(
96
+ f"{outPath}/{spks}/{file}_pitch.npy",
97
+ coarse_pit,
98
+ allow_pickle=False,
99
+ )
100
+ np.save(
101
+ f"{outPath}/{spks}/{file}_nsff0.npy",
102
+ featur_pit,
103
+ allow_pickle=False,
104
+ )
105
+
106
+ path_audio = f"./data/waves/{spks}/{file}.wav"
107
+ path_spkid = f"./data/spkid/{spks}.npy"
108
+ path_label = (
109
+ f"./data/phone/{spks}/{file}.npy" # phone means ppg & hubert
110
+ )
111
+ path_pitch = f"./data/label/{spks}/{file}_pitch.npy"
112
+ path_nsff0 = f"./data/label/{spks}/{file}_nsff0.npy"
113
+ print(
114
+ f"{path_audio}|{path_spkid}|{path_label}|{path_pitch}|{path_nsff0}",
115
+ file=vits_file,
116
+ )
117
+
118
+ vits_file.close()