Spaces:
Sleeping
Sleeping
File size: 3,345 Bytes
91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 91b7015 bfd18d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
from typing import List
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import (
ConversationalRetrievalChain,
)
from langchain.chat_models import ChatOpenAI
from langchain.docstore.document import Document
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import chainlit as cl
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a text file to begin!",
accept=["text/plain"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
with open(file.path, "r", encoding="utf-8") as f:
text = f.read()
# Split the text into chunks
texts = text_splitter.split_text(text)
# Create a metadata for each chunk
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
# Create a Chroma vector store
embeddings = OpenAIEmbeddings()
docsearch = await cl.make_async(Chroma.from_texts)(
texts, embeddings, metadatas=metadatas
)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
cb = cl.AsyncLangchainCallbackHandler()
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"] # type: List[Document]
text_elements = [] # type: List[cl.Text]
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name, display="side")
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=text_elements).send()
|