File size: 3,345 Bytes
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
91b7015
bfd18d6
 
 
91b7015
bfd18d6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os

from typing import List



from langchain.embeddings.openai import OpenAIEmbeddings

from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.vectorstores import Chroma

from langchain.chains import (

    ConversationalRetrievalChain,

)

from langchain.chat_models import ChatOpenAI



from langchain.docstore.document import Document

from langchain.memory import ChatMessageHistory, ConversationBufferMemory



import chainlit as cl



os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")



text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)





@cl.on_chat_start

async def on_chat_start():

    files = None



    # Wait for the user to upload a file

    while files == None:

        files = await cl.AskFileMessage(

            content="Please upload a text file to begin!",

            accept=["text/plain"],

            max_size_mb=20,

            timeout=180,

        ).send()



    file = files[0]



    msg = cl.Message(content=f"Processing `{file.name}`...")

    await msg.send()



    with open(file.path, "r", encoding="utf-8") as f:

        text = f.read()



    # Split the text into chunks

    texts = text_splitter.split_text(text)



    # Create a metadata for each chunk

    metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]



    # Create a Chroma vector store

    embeddings = OpenAIEmbeddings()

    docsearch = await cl.make_async(Chroma.from_texts)(

        texts, embeddings, metadatas=metadatas

    )



    message_history = ChatMessageHistory()



    memory = ConversationBufferMemory(

        memory_key="chat_history",

        output_key="answer",

        chat_memory=message_history,

        return_messages=True,

    )



    # Create a chain that uses the Chroma vector store

    chain = ConversationalRetrievalChain.from_llm(

        ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),

        chain_type="stuff",

        retriever=docsearch.as_retriever(),

        memory=memory,

        return_source_documents=True,

    )



    # Let the user know that the system is ready

    msg.content = f"Processing `{file.name}` done. You can now ask questions!"

    await msg.update()



    cl.user_session.set("chain", chain)





@cl.on_message

async def main(message: cl.Message):

    chain = cl.user_session.get("chain")  # type: ConversationalRetrievalChain

    cb = cl.AsyncLangchainCallbackHandler()



    res = await chain.acall(message.content, callbacks=[cb])

    answer = res["answer"]

    source_documents = res["source_documents"]  # type: List[Document]



    text_elements = []  # type: List[cl.Text]



    if source_documents:

        for source_idx, source_doc in enumerate(source_documents):

            source_name = f"source_{source_idx}"

            # Create the text element referenced in the message

            text_elements.append(

                cl.Text(content=source_doc.page_content, name=source_name, display="side")

            )

        source_names = [text_el.name for text_el in text_elements]



        if source_names:

            answer += f"\nSources: {', '.join(source_names)}"

        else:

            answer += "\nNo sources found"



    await cl.Message(content=answer, elements=text_elements).send()