LibRAG / app.py
daniel Foley
Initial sample chainlit
bfd18d6
raw
history blame
2.16 kB
import chainlit as cl
from typing import Optional
import time
# Store conversation history
conversation_memory = []
@cl.on_chat_start
async def start():
"""Initializes the chat session"""
# Send an initial message
await cl.Message(
content="πŸ‘‹ Hello! I'm your AI assistant. How can I help you today?",
author="Assistant"
).send()
# Set some session variables
cl.user_session.set("conversation_started", True)
@cl.on_message
async def main(message: cl.Message):
"""Main message handler"""
# Simulate some processing time
with cl.Step("Processing...") as step:
time.sleep(1) # Simulated delay
step.output = "Processed message"
# Store message in conversation history
conversation_memory.append({
"role": "user",
"content": message.content
})
# Create a response
response = f"I received your message: '{message.content}'. This is a demo response."
# Store response in conversation history
conversation_memory.append({
"role": "assistant",
"content": response
})
# Send response with typing effect
await cl.Message(
content=response,
author="Assistant"
).send()
@cl.password_auth_callback
def auth_callback(username: str, password: str) -> Optional[cl.User]:
"""Basic authentication handler"""
# This is a simple example - in production, use proper authentication
if username == "demo" and password == "password":
return cl.User(identifier="demo", metadata={"role": "user"})
return None
@cl.on_chat_end
async def end():
"""Cleanup when chat ends"""
await cl.Message(content="πŸ‘‹ Thank you for chatting! Goodbye!").send()
# Custom action handler example
@cl.action_callback("feedback")
async def on_action(action):
"""Handles custom feedback action"""
await cl.Message(content=f"Received feedback: {action.value}").send()