LibRAG / streamlit_app.py
Daniel Foley
loading scripts and app stuff
b296661
raw
history blame
4.9 kB
import streamlit as st
import os
from typing import List, Tuple, Optional
from pinecone import Pinecone
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from dotenv import load_dotenv
from RAG import RAG
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page configuration
st.set_page_config(
page_title="Boston Public Library Chatbot",
page_icon="🤖",
layout="wide"
)
def initialize_models() -> Tuple[Optional[ChatOpenAI], HuggingFaceEmbeddings]:
"""Initialize the language model and embeddings."""
try:
load_dotenv()
# Initialize OpenAI model
llm = ChatOpenAI(
model="gpt-4", # Changed from gpt-4o-mini which appears to be a typo
temperature=0,
timeout=60, # Added reasonable timeout
max_retries=2
)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
return llm, embeddings
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
st.error(f"Failed to initialize models: {str(e)}")
return None, None
def process_message(
query: str,
llm: ChatOpenAI,
index_name: str,
embeddings: HuggingFaceEmbeddings
) -> Tuple[str, List]:
"""Process the user message using the RAG system."""
try:
response, sources = RAG(
query=query,
llm=llm,
index_name=index_name,
embeddings=embeddings
)
return response, sources
except Exception as e:
logger.error(f"Error in process_message: {str(e)}")
return f"Error processing message: {str(e)}", []
def display_sources(sources: List) -> None:
"""Display sources in expandable sections with proper formatting."""
if not sources:
st.info("No sources available for this response.")
return
st.subheader("Sources")
for i, doc in enumerate(sources, 1):
try:
with st.expander(f"Source {i}"):
if hasattr(doc, 'page_content'):
st.markdown(f"**Content:** {doc.page_content}")
if hasattr(doc, 'metadata'):
for key, value in doc.metadata.items():
st.markdown(f"**{key.title()}:** {value}")
else:
st.markdown(f"**Content:** {str(doc)}")
except Exception as e:
logger.error(f"Error displaying source {i}: {str(e)}")
st.error(f"Error displaying source {i}")
def main():
st.title("RAG Chatbot")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize models
llm, embeddings = initialize_models()
if not llm or not embeddings:
st.error("Failed to initialize the application. Please check the logs.")
return
# Constants
INDEX_NAME = 'bpl-rag'
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
user_input = st.chat_input("Type your message here...")
if user_input:
# Display user message
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
# Process and display assistant response
with st.chat_message("assistant"):
with st.spinner("Let Me Think..."):
response, sources = process_message(
query=user_input,
llm=llm,
index_name=INDEX_NAME,
embeddings=embeddings
)
if isinstance(response, str):
st.markdown(response)
st.session_state.messages.append({
"role": "assistant",
"content": response
})
# Display sources
display_sources(sources)
else:
st.error("Received an invalid response format")
# Footer
st.markdown("---")
st.markdown(
"Built with ❤️ using Streamlit + LangChain + OpenAI",
help="An AI-powered chatbot with RAG capabilities"
)
if __name__ == "__main__":
main()