Daniel Foley commited on
Commit
16f0715
·
1 Parent(s): bfbadc3

moved vectorstore initialization outside of RAG

Browse files
Files changed (2) hide show
  1. RAG.py +8 -8
  2. streamlit_app.py +16 -5
RAG.py CHANGED
@@ -15,15 +15,15 @@ from typing import Dict, Any, Optional, List, Tuple
15
  import json
16
  import logging
17
 
18
- def retrieve(index_name: str, query: str, embeddings, k: int = 1000) -> Tuple[List[Document], List[float]]:
19
  start = time.time()
20
  load_dotenv()
21
- pinecone_api_key = os.getenv("PINECONE_API_KEY")
22
- pc = Pinecone(api_key=pinecone_api_key)
23
 
24
- index = pc.Index(index_name)
25
- vector_store = PineconeVectorStore(index=index, embedding=embeddings)
26
- results = vector_store.similarity_search_with_score(
27
  query,
28
  k=k,
29
  )
@@ -118,7 +118,7 @@ def parse_xml_and_check(xml_string: str) -> str:
118
 
119
  return parsed_response.get('RESPONSE', "No response found in the output")
120
 
121
- def RAG(llm: Any, query: str, index_name: str, embeddings: Any, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
122
  """Main RAG function with improved error handling and validation."""
123
  start = time.time()
124
  try:
@@ -154,7 +154,7 @@ def RAG(llm: Any, query: str, index_name: str, embeddings: Any, top: int = 10, k
154
  new_query = parse_xml_and_query(query=query,xml_string=query_response.content)
155
  print(f"New_Query: {new_query}")
156
 
157
- retrieved, _ = retrieve(index_name=index_name, query=new_query, embeddings=embeddings, k=k)
158
  if not retrieved:
159
  return "No documents found for your query.", []
160
 
 
15
  import json
16
  import logging
17
 
18
+ def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:
19
  start = time.time()
20
  load_dotenv()
21
+ # pinecone_api_key = os.getenv("PINECONE_API_KEY")
22
+ # pc = Pinecone(api_key=pinecone_api_key)
23
 
24
+ # index = pc.Index(index_name)
25
+ # vector_store = PineconeVectorStore(index=index, embedding=embeddings)
26
+ results = vectorstore.similarity_search_with_score(
27
  query,
28
  k=k,
29
  )
 
118
 
119
  return parsed_response.get('RESPONSE', "No response found in the output")
120
 
121
+ def RAG(llm: Any, query: str, index_name: str, embeddings: Any,vectorstore:PineconeVectorStore, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
122
  """Main RAG function with improved error handling and validation."""
123
  start = time.time()
124
  try:
 
154
  new_query = parse_xml_and_query(query=query,xml_string=query_response.content)
155
  print(f"New_Query: {new_query}")
156
 
157
+ retrieved, _ = retrieve(query=new_query, vectorstore=vectorstore, k=k)
158
  if not retrieved:
159
  return "No documents found for your query.", []
160
 
streamlit_app.py CHANGED
@@ -50,7 +50,9 @@ def process_message(
50
  query: str,
51
  llm: ChatOpenAI,
52
  index_name: str,
53
- embeddings: HuggingFaceEmbeddings
 
 
54
  ) -> Tuple[str, List]:
55
  """Process the user message using the RAG system."""
56
  try:
@@ -58,7 +60,8 @@ def process_message(
58
  query=query,
59
  llm=llm,
60
  index_name=index_name,
61
- embeddings=embeddings
 
62
  )
63
  return response, sources
64
  except Exception as e:
@@ -89,6 +92,10 @@ def display_sources(sources: List) -> None:
89
  def main():
90
  st.title("RAG Chatbot")
91
 
 
 
 
 
92
  # Initialize session state
93
  if "messages" not in st.session_state:
94
  st.session_state.messages = []
@@ -99,8 +106,11 @@ def main():
99
  st.error("Failed to initialize the application. Please check the logs.")
100
  return
101
 
102
- # Constants
103
- INDEX_NAME = 'bpl-rag'
 
 
 
104
 
105
  # Display chat history
106
  for message in st.session_state.messages:
@@ -122,7 +132,8 @@ def main():
122
  query=user_input,
123
  llm=llm,
124
  index_name=INDEX_NAME,
125
- embeddings=embeddings
 
126
  )
127
 
128
  if isinstance(response, str):
 
50
  query: str,
51
  llm: ChatOpenAI,
52
  index_name: str,
53
+ embeddings: HuggingFaceEmbeddings,
54
+ vectorstore: PineconeVectorStore,
55
+
56
  ) -> Tuple[str, List]:
57
  """Process the user message using the RAG system."""
58
  try:
 
60
  query=query,
61
  llm=llm,
62
  index_name=index_name,
63
+ embeddings=embeddings,
64
+ vectorstore=vectorstore,
65
  )
66
  return response, sources
67
  except Exception as e:
 
92
  def main():
93
  st.title("RAG Chatbot")
94
 
95
+ INDEX_NAME = 'bpl-rag'
96
+
97
+ pinecone_api_key = os.getenv("PINECONE_API_KEY")
98
+
99
  # Initialize session state
100
  if "messages" not in st.session_state:
101
  st.session_state.messages = []
 
106
  st.error("Failed to initialize the application. Please check the logs.")
107
  return
108
 
109
+ #initialize vectorstore
110
+ pc = Pinecone(api_key=pinecone_api_key)
111
+
112
+ index = pc.Index(INDEX_NAME)
113
+ vector_store = PineconeVectorStore(index=index, embedding=embeddings)
114
 
115
  # Display chat history
116
  for message in st.session_state.messages:
 
132
  query=user_input,
133
  llm=llm,
134
  index_name=INDEX_NAME,
135
+ embeddings=embeddings,
136
+ vectorstore=vector_store
137
  )
138
 
139
  if isinstance(response, str):