Daniel Foley commited on
Commit
364893a
Β·
1 Parent(s): a9e136f

Forgot to include everyone on last commit + old scripts

Browse files

Co-authored By: Daniel [email protected]
Co-authored By: Brandon [email protected]
Co-authored By: Enrico [email protected]
Co-authored By: Jinanshi [email protected]

old_scripts/app.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from typing import List
4
+
5
+
6
+
7
+ from langchain.embeddings.openai import OpenAIEmbeddings
8
+
9
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
10
+
11
+ from langchain.vectorstores import Chroma
12
+
13
+ from langchain.chains import (
14
+
15
+ ConversationalRetrievalChain,
16
+
17
+ )
18
+
19
+ from langchain.chat_models import ChatOpenAI
20
+
21
+
22
+
23
+ from langchain.docstore.document import Document
24
+
25
+ from langchain.memory import ChatMessageHistory, ConversationBufferMemory
26
+
27
+
28
+
29
+ import chainlit as cl
30
+
31
+
32
+
33
+ os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
34
+
35
+
36
+
37
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
38
+
39
+
40
+
41
+
42
+
43
+ @cl.on_chat_start
44
+
45
+ async def on_chat_start():
46
+
47
+ files = None
48
+
49
+
50
+
51
+ # Wait for the user to upload a file
52
+
53
+ while files == None:
54
+
55
+ files = await cl.AskFileMessage(
56
+
57
+ content="Please upload a text file to begin!",
58
+
59
+ accept=["text/plain"],
60
+
61
+ max_size_mb=20,
62
+
63
+ timeout=180,
64
+
65
+ ).send()
66
+
67
+
68
+
69
+ file = files[0]
70
+
71
+
72
+
73
+ msg = cl.Message(content=f"Processing `{file.name}`...")
74
+
75
+ await msg.send()
76
+
77
+
78
+
79
+ with open(file.path, "r", encoding="utf-8") as f:
80
+
81
+ text = f.read()
82
+
83
+
84
+
85
+ # Split the text into chunks
86
+
87
+ texts = text_splitter.split_text(text)
88
+
89
+
90
+
91
+ # Create a metadata for each chunk
92
+
93
+ metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
94
+
95
+
96
+
97
+ # Create a Chroma vector store
98
+
99
+ embeddings = OpenAIEmbeddings()
100
+
101
+ docsearch = await cl.make_async(Chroma.from_texts)(
102
+
103
+ texts, embeddings, metadatas=metadatas
104
+
105
+ )
106
+
107
+
108
+
109
+ message_history = ChatMessageHistory()
110
+
111
+
112
+
113
+ memory = ConversationBufferMemory(
114
+
115
+ memory_key="chat_history",
116
+
117
+ output_key="answer",
118
+
119
+ chat_memory=message_history,
120
+
121
+ return_messages=True,
122
+
123
+ )
124
+
125
+
126
+
127
+ # Create a chain that uses the Chroma vector store
128
+
129
+ chain = ConversationalRetrievalChain.from_llm(
130
+
131
+ ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
132
+
133
+ chain_type="stuff",
134
+
135
+ retriever=docsearch.as_retriever(),
136
+
137
+ memory=memory,
138
+
139
+ return_source_documents=True,
140
+
141
+ )
142
+
143
+
144
+
145
+ # Let the user know that the system is ready
146
+
147
+ msg.content = f"Processing `{file.name}` done. You can now ask questions!"
148
+
149
+ await msg.update()
150
+
151
+
152
+
153
+ cl.user_session.set("chain", chain)
154
+
155
+
156
+
157
+
158
+
159
+ @cl.on_message
160
+
161
+ async def main(message: cl.Message):
162
+
163
+ chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
164
+
165
+ cb = cl.AsyncLangchainCallbackHandler()
166
+
167
+
168
+
169
+ res = await chain.acall(message.content, callbacks=[cb])
170
+
171
+ answer = res["answer"]
172
+
173
+ source_documents = res["source_documents"] # type: List[Document]
174
+
175
+
176
+
177
+ text_elements = [] # type: List[cl.Text]
178
+
179
+
180
+
181
+ if source_documents:
182
+
183
+ for source_idx, source_doc in enumerate(source_documents):
184
+
185
+ source_name = f"source_{source_idx}"
186
+
187
+ # Create the text element referenced in the message
188
+
189
+ text_elements.append(
190
+
191
+ cl.Text(content=source_doc.page_content, name=source_name, display="side")
192
+
193
+ )
194
+
195
+ source_names = [text_el.name for text_el in text_elements]
196
+
197
+
198
+
199
+ if source_names:
200
+
201
+ answer += f"\nSources: {', '.join(source_names)}"
202
+
203
+ else:
204
+
205
+ answer += "\nNo sources found"
206
+
207
+
208
+
209
+ await cl.Message(content=answer, elements=text_elements).send()
210
+
211
+
212
+
213
+
old_scripts/app1.1.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv # Import dotenv to load environment variables
2
+ import os
3
+ import chainlit as cl
4
+ from langchain.chains import RetrievalQA
5
+ from langchain_community.vectorstores import FAISS
6
+ from langchain_community.embeddings import OpenAIEmbeddings
7
+ from langchain.text_splitter import CharacterTextSplitter
8
+ from langchain.chat_models import ChatOpenAI
9
+ from langchain.schema import Document
10
+ from langchain.embeddings import HuggingFaceEmbeddings
11
+ import json
12
+
13
+ # Load environment variables from .env file
14
+ load_dotenv()
15
+
16
+ # Get the OpenAI API key from the environment
17
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
18
+
19
+ if not OPENAI_API_KEY:
20
+ raise ValueError("OPENAI_API_KEY is not set. Please add it to your .env file.")
21
+
22
+ # Global variables for vector store and QA chain
23
+ vector_store = None
24
+ qa_chain = None
25
+
26
+ # Step 1: Load and Process JSON Data
27
+ def load_json_file(file_path):
28
+ with open(file_path, "r", encoding="utf-8") as file:
29
+ data = json.load(file)
30
+ return data
31
+
32
+ def setup_vector_store_from_json(json_data):
33
+ # Create Document objects with URLs and content
34
+ documents = [Document(page_content=item["content"], metadata={"url": item["url"]}) for item in json_data]
35
+
36
+ # Create embeddings and store them in FAISS
37
+ #embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
38
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
39
+ vector_store = FAISS.from_documents(documents, embeddings)
40
+ return vector_store
41
+
42
+ def setup_qa_chain(vector_store):
43
+ retriever = vector_store.as_retriever(search_kwargs={"k": 3})
44
+ llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
45
+ qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
46
+ return qa_chain
47
+
48
+ # Initialize Chainlit: Preload data when the chat starts
49
+ @cl.on_chat_start
50
+ async def chat_start():
51
+ global vector_store, qa_chain
52
+
53
+ # Load and preprocess the JSON file
54
+ json_data = load_json_file("football_players.json")
55
+ vector_store = setup_vector_store_from_json(json_data)
56
+ qa_chain = setup_qa_chain(vector_store)
57
+
58
+ # Send a welcome message
59
+ await cl.Message(content="Welcome to the RAG app! Ask me any question based on the knowledge base.").send()
60
+
61
+ # Process user queries
62
+ @cl.on_message
63
+ async def main(message: cl.Message):
64
+ global qa_chain
65
+
66
+ # Ensure the QA chain is ready
67
+ if qa_chain is None:
68
+ await cl.Message(content="The app is still initializing. Please wait a moment and try again.").send()
69
+ return
70
+
71
+ # Get query from the user and run the QA chain
72
+ query = message.content
73
+ response = qa_chain({"query": query})
74
+
75
+ # Extract the answer and source documents
76
+ answer = response["result"]
77
+ sources = response["source_documents"]
78
+
79
+ # Format and send the response
80
+ await cl.Message(content=f"**Answer:** {answer}").send()
81
+ if sources:
82
+ await cl.Message(content="**Sources:**").send()
83
+ for i, doc in enumerate(sources, 1):
84
+ url = doc.metadata.get("url", "No URL available")
85
+ await cl.Message(content=f"**Source {i}:** {doc.page_content}\n**URL:** {url}").send()
old_scripts/bpl_scraper.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from bs4 import BeautifulSoup
3
+ import os
4
+ import json
5
+ import re
6
+ from typing import List, Dict
7
+ import logging
8
+ from urllib.parse import urljoin, urlparse
9
+
10
+ class DigitalCommonwealthScraper:
11
+ def __init__(self, base_url: str = "https://www.digitalcommonwealth.org"):
12
+ """
13
+ Initialize the scraper with base URL and logging
14
+
15
+ :param base_url: Base URL for Digital Commonwealth
16
+ """
17
+ self.base_url = base_url
18
+ logging.basicConfig(level=logging.INFO)
19
+ self.logger = logging.getLogger(__name__)
20
+
21
+ # Headers to mimic browser request
22
+ self.headers = {
23
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
24
+ }
25
+
26
+ def fetch_page(self, url: str) -> requests.Response:
27
+ """
28
+ Fetch webpage content with error handling
29
+
30
+ :param url: URL to fetch
31
+ :return: Response object
32
+ """
33
+ try:
34
+ response = requests.get(url, headers=self.headers)
35
+ response.raise_for_status()
36
+ return response
37
+ except requests.RequestException as e:
38
+ self.logger.error(f"Error fetching {url}: {e}")
39
+ return None
40
+
41
+ def extract_json_metadata(self, url: str) -> Dict:
42
+ """
43
+ Extract JSON metadata from the page
44
+
45
+ :param url: URL of the page
46
+ :return: Dictionary of metadata
47
+ """
48
+ json_url = f"{url}.json"
49
+ response = self.fetch_page(json_url)
50
+
51
+ if response:
52
+ try:
53
+ return response.json()
54
+ except json.JSONDecodeError:
55
+ self.logger.error(f"Could not parse JSON from {json_url}")
56
+ return {}
57
+ return {}
58
+
59
+ def extract_images(self, url: str) -> List[Dict]:
60
+ """
61
+ Extract images from the page
62
+
63
+ :param url: URL of the page to scrape
64
+ :return: List of image dictionaries
65
+ """
66
+ # Fetch page content
67
+ response = self.fetch_page(url)
68
+ if not response:
69
+ return []
70
+
71
+ # Parse HTML
72
+ soup = BeautifulSoup(response.text, 'html.parser')
73
+
74
+ # Extract JSON metadata
75
+ metadata = self.extract_json_metadata(url)
76
+
77
+ # List to store images
78
+ images = []
79
+
80
+ # Strategy 1: Look for image viewers or specific image containers
81
+ image_containers = [
82
+ soup.find('div', class_='viewer-container'),
83
+ soup.find('div', class_='image-viewer'),
84
+ soup.find('div', id='image-container')
85
+ ]
86
+
87
+ # Strategy 2: Find all image tags
88
+ img_tags = soup.find_all('img')
89
+
90
+ # Combine image sources
91
+ for img in img_tags:
92
+ # Get image source
93
+ src = img.get('src')
94
+ if not src:
95
+ continue
96
+
97
+ # Resolve relative URLs
98
+ full_src = urljoin(url, src)
99
+
100
+ # Extract alt text or use filename
101
+ alt = img.get('alt', os.path.basename(urlparse(full_src).path))
102
+
103
+ # Create image dictionary
104
+ image_info = {
105
+ 'url': full_src,
106
+ 'alt': alt,
107
+ 'source_page': url
108
+ }
109
+
110
+ # Try to add metadata if available
111
+ if metadata:
112
+ try:
113
+ # Extract relevant metadata from JSON if possible
114
+ image_info['metadata'] = {
115
+ 'title': metadata.get('data', {}).get('attributes', {}).get('title_info_primary_tsi'),
116
+ 'description': metadata.get('data', {}).get('attributes', {}).get('abstract_tsi'),
117
+ 'subject': metadata.get('data', {}).get('attributes', {}).get('subject_geographic_sim')
118
+ }
119
+ except Exception as e:
120
+ self.logger.warning(f"Error extracting metadata: {e}")
121
+
122
+ images.append(image_info)
123
+
124
+ return images
125
+
126
+ def download_images(self, images: List[Dict], output_dir: str = 'downloaded_images') -> List[str]:
127
+ """
128
+ Download images to local directory
129
+
130
+ :param images: List of image dictionaries
131
+ :param output_dir: Directory to save images
132
+ :return: List of downloaded file paths
133
+ """
134
+ # Create output directory
135
+ os.makedirs(output_dir, exist_ok=True)
136
+
137
+ downloaded_files = []
138
+
139
+ for i, image in enumerate(images):
140
+ try:
141
+ response = requests.get(image['url'], headers=self.headers)
142
+ response.raise_for_status()
143
+
144
+ # Generate filename
145
+ ext = os.path.splitext(urlparse(image['url']).path)[1] or '.jpg'
146
+ filename = os.path.join(output_dir, f'image_{i}{ext}')
147
+
148
+ with open(filename, 'wb') as f:
149
+ f.write(response.content)
150
+
151
+ downloaded_files.append(filename)
152
+ self.logger.info(f"Downloaded: {filename}")
153
+
154
+ except Exception as e:
155
+ self.logger.error(f"Error downloading {image['url']}: {e}")
156
+
157
+ return downloaded_files
158
+
159
+ #def main():
160
+ # Example usage
161
+ # scraper = DigitalCommonwealthScraper()
162
+ #
163
+ # Example URL from input
164
+ # url = "https://www.digitalcommonwealth.org/search/commonwealth-oai:5712qh738"
165
+
166
+ # Extract images
167
+ #images = scraper.extract_images(url)
168
+
169
+ # Print image information
170
+ #for img in images:
171
+ # print(json.dumps(img, indent=2))
172
+
173
+ # Optional: Download images
174
+ #scraper.download_images(images)
175
+
176
+ #if __name__ == "__main__":
177
+ # main()
old_scripts/faiss_migrate.ipynb ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "Used this to migrate vectors to pinecone from our faiss indices. I recommend you use our scripts to ingest your data directly into Pinecone. For this, direct it to a folder containing the index.faiss and index.pkl files that you want to ingest into pinecone."
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": null,
13
+ "metadata": {},
14
+ "outputs": [
15
+ {
16
+ "name": "stderr",
17
+ "output_type": "stream",
18
+ "text": [
19
+ "c:\\Users\\dfole\\Desktop\\CS549\\pinecone_venv\\Lib\\site-packages\\pinecone\\data\\index.py:1: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
20
+ " from tqdm.autonotebook import tqdm\n"
21
+ ]
22
+ }
23
+ ],
24
+ "source": [
25
+ "import getpass\n",
26
+ "import os\n",
27
+ "import time\n",
28
+ "from pinecone import Pinecone, ServerlessSpec\n",
29
+ "\n",
30
+ "pinecone_api_key = os.environ.get(\"PINECONE_API_KEY\")\n",
31
+ "\n",
32
+ "pc = Pinecone(api_key=pinecone_api_key)"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 2,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "from langchain_huggingface import HuggingFaceEmbeddings\n",
42
+ "\n",
43
+ "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [
51
+ {
52
+ "name": "stderr",
53
+ "output_type": "stream",
54
+ "text": [
55
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4685/4685 [1:57:28<00:00, 1.50s/it] \n"
56
+ ]
57
+ },
58
+ {
59
+ "name": "stdout",
60
+ "output_type": "stream",
61
+ "text": [
62
+ "Successfully migrated 468455 documents to Pinecone index 'bpl-rag'\n"
63
+ ]
64
+ }
65
+ ],
66
+ "source": [
67
+ "import os\n",
68
+ "from langchain_community.vectorstores import FAISS\n",
69
+ "from pinecone import Pinecone, ServerlessSpec\n",
70
+ "from langchain_community.embeddings import OpenAIEmbeddings\n",
71
+ "from tqdm import tqdm\n",
72
+ "from langchain_pinecone import PineconeVectorStore\n",
73
+ "\n",
74
+ "def migrate_faiss_to_pinecone(\n",
75
+ " faiss_index_path: str,\n",
76
+ " pinecone_api_key: str,\n",
77
+ " index_name: str,\n",
78
+ " batch_size: int = 100\n",
79
+ "):\n",
80
+ " \"\"\"\n",
81
+ " Migrate a local FAISS index to Pinecone.\n",
82
+ " \n",
83
+ " Args:\n",
84
+ " faiss_index_path: Path to the local FAISS index\n",
85
+ " pinecone_api_key: Your Pinecone API key\n",
86
+ " pinecone_environment: Pinecone environment (e.g., \"us-east1-gcp\")\n",
87
+ " index_name: Name of the Pinecone index to create/use\n",
88
+ " batch_size: Number of vectors to upload in each batch\n",
89
+ " \"\"\"\n",
90
+ " # Load the local FAISS index\n",
91
+ " embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
92
+ " faiss_vectorstore = FAISS.load_local(faiss_index_path, embeddings,allow_dangerous_deserialization=True)\n",
93
+ " pc = Pinecone(api_key=pinecone_api_key)\n",
94
+ "\n",
95
+ " index = pc.Index(index_name)\n",
96
+ " \n",
97
+ " # Get all the vectors and documents from FAISS\n",
98
+ " all_docs = faiss_vectorstore.docstore._dict\n",
99
+ " docs = dict()\n",
100
+ "\n",
101
+ " for uuid in faiss_vectorstore.docstore._dict:\n",
102
+ " doc = faiss_vectorstore.docstore._dict[uuid]\n",
103
+ " # print(doc)\n",
104
+ " if doc.metadata['field'] in ['abstract_tsi','title_info_primary_tsi','title_info_primary_subtitle_tsi', 'title_info_alternative_tsim']:\n",
105
+ " if len(doc.page_content) > 3:\n",
106
+ " docs[uuid] = doc\n",
107
+ "\n",
108
+ " total_docs = len(docs)\n",
109
+ " \n",
110
+ " pinecone_vectorstore = PineconeVectorStore(index=index, embedding=embeddings)\n",
111
+ "\n",
112
+ " # Batch processing\n",
113
+ " for i in tqdm(range(0, total_docs, batch_size)):\n",
114
+ " batch_ids = list(docs.keys())[i:i + batch_size]\n",
115
+ " batch_docs = [docs[doc_id] for doc_id in batch_ids]\n",
116
+ " batch_embeddings = [faiss_vectorstore.index.reconstruct(j).tolist() \n",
117
+ " for j in range(i, min(i + batch_size, total_docs))]\n",
118
+ " \n",
119
+ " # Create metadata for each document\n",
120
+ " metadatas = [doc.metadata for doc in batch_docs]\n",
121
+ " texts = [doc.page_content for doc in batch_docs]\n",
122
+ " # print(batch_docs)\n",
123
+ " # Add vectors to Pinecone\n",
124
+ " pinecone_vectorstore.add_texts(\n",
125
+ " texts=texts,\n",
126
+ " metadatas=metadatas,\n",
127
+ " embeddings=batch_embeddings,\n",
128
+ " ids=batch_ids\n",
129
+ " )\n",
130
+ " \n",
131
+ " print(f\"Successfully migrated {total_docs} documents to Pinecone index '{index_name}'\")\n",
132
+ " return pinecone_vectorstore\n",
133
+ "\n",
134
+ "# Example usage:\n",
135
+ "if __name__ == \"__main__\":\n",
136
+ " # Set your credentials and paths\n",
137
+ " FAISS_INDEX_PATH = \"faiss_900_1200\"\n",
138
+ " PINECONE_API_KEY = \"pcsk_47kPH2_665LiydNVZXrhKkZgx7eNJ5bjEChMWhp6Vx2fUrShiNXRZ2rSCdonUiAkUTDJ7n\"\n",
139
+ " INDEX_NAME = \"bpl-rag\"\n",
140
+ " \n",
141
+ " # Perform migration\n",
142
+ " pinecone_vs = migrate_faiss_to_pinecone(\n",
143
+ " faiss_index_path=FAISS_INDEX_PATH,\n",
144
+ " pinecone_api_key=PINECONE_API_KEY,\n",
145
+ " index_name=INDEX_NAME,\n",
146
+ " batch_size=100\n",
147
+ " )"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {},
154
+ "outputs": [],
155
+ "source": []
156
+ }
157
+ ],
158
+ "metadata": {
159
+ "kernelspec": {
160
+ "display_name": "pinecone_venv",
161
+ "language": "python",
162
+ "name": "python3"
163
+ },
164
+ "language_info": {
165
+ "codemirror_mode": {
166
+ "name": "ipython",
167
+ "version": 3
168
+ },
169
+ "file_extension": ".py",
170
+ "mimetype": "text/x-python",
171
+ "name": "python",
172
+ "nbconvert_exporter": "python",
173
+ "pygments_lexer": "ipython3",
174
+ "version": "3.12.4"
175
+ }
176
+ },
177
+ "nbformat": 4,
178
+ "nbformat_minor": 2
179
+ }
old_scripts/new_streamlit.app ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from typing import List, Tuple, Optional
4
+ from pinecone import Pinecone
5
+ from langchain_pinecone import PineconeVectorStore
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain_openai import ChatOpenAI
8
+ from langchain_core.prompts import PromptTemplate
9
+ from dotenv import load_dotenv
10
+ from RAG import RAG
11
+ import logging
12
+
13
+ # Configure logging
14
+ logging.basicConfig(level=logging.INFO)
15
+ logger = logging.getLogger(__name__)
16
+
17
+ # Page configuration
18
+ st.set_page_config(
19
+ page_title="RAG Chatbot",
20
+ page_icon="πŸ€–",
21
+ layout="wide"
22
+ )
23
+
24
+ def initialize_models() -> Tuple[Optional[ChatOpenAI], HuggingFaceEmbeddings]:
25
+ """Initialize the language model and embeddings."""
26
+ try:
27
+ load_dotenv()
28
+
29
+ # Initialize OpenAI model
30
+ llm = ChatOpenAI(
31
+ model="gpt-4", # Changed from gpt-4o-mini which appears to be a typo
32
+ temperature=0,
33
+ timeout=60, # Added reasonable timeout
34
+ max_retries=2
35
+ )
36
+
37
+ # Initialize embeddings
38
+ embeddings = HuggingFaceEmbeddings(
39
+ model_name="sentence-transformers/all-MiniLM-L6-v2"
40
+ )
41
+
42
+ return llm, embeddings
43
+
44
+ except Exception as e:
45
+ logger.error(f"Error initializing models: {str(e)}")
46
+ st.error(f"Failed to initialize models: {str(e)}")
47
+ return None, None
48
+
49
+ def process_message(
50
+ query: str,
51
+ llm: ChatOpenAI,
52
+ index_name: str,
53
+ embeddings: HuggingFaceEmbeddings
54
+ ) -> Tuple[str, List]:
55
+ """Process the user message using the RAG system."""
56
+ try:
57
+ response, sources = RAG(
58
+ query=query,
59
+ llm=llm,
60
+ index_name=index_name,
61
+ embeddings=embeddings
62
+ )
63
+ return response, sources
64
+ except Exception as e:
65
+ logger.error(f"Error in process_message: {str(e)}")
66
+ return f"Error processing message: {str(e)}", []
67
+
68
+ def display_sources(sources: List) -> None:
69
+ """Display sources in expandable sections with proper formatting and custom URLs."""
70
+ if not sources:
71
+ st.info("No sources available for this response.")
72
+ return
73
+
74
+ st.subheader("Sources")
75
+ for i, doc in enumerate(sources, 1):
76
+ try:
77
+ with st.expander(f"Source {i}"):
78
+ if hasattr(doc, 'page_content'):
79
+ st.markdown(f"**Content:** {doc.page_content}")
80
+ if hasattr(doc, 'metadata'):
81
+ # Construct URL from source metadata
82
+
83
+ # Display other metadata
84
+ for key, value in doc.metadata.items():
85
+ if key != 'source': # Skip source since we already used it for URL
86
+ st.markdown(f"**{key.title()}:** {value}")
87
+ else:
88
+ st.markdown(f"**Content:** {str(doc)}")
89
+ except Exception as e:
90
+ logger.error(f"Error displaying source {i}: {str(e)}")
91
+ st.error(f"Error displaying source {i}")
92
+
93
+ def main():
94
+ st.title("RAG Chatbot")
95
+
96
+ # Initialize session state
97
+ if "messages" not in st.session_state:
98
+ st.session_state.messages = []
99
+
100
+ # Initialize models
101
+ llm, embeddings = initialize_models()
102
+ if not llm or not embeddings:
103
+ st.error("Failed to initialize the application. Please check the logs.")
104
+ return
105
+
106
+ # Constants
107
+ INDEX_NAME = 'bpl-rag'
108
+
109
+ # Display chat history
110
+ for message in st.session_state.messages:
111
+ with st.chat_message(message["role"]):
112
+ st.markdown(message["content"])
113
+
114
+ # Chat input
115
+ user_input = st.chat_input("Type your message here...")
116
+ if user_input:
117
+ # Display user message
118
+ with st.chat_message("user"):
119
+ st.markdown(user_input)
120
+ st.session_state.messages.append({"role": "user", "content": user_input})
121
+
122
+ # Process and display assistant response
123
+ with st.chat_message("assistant"):
124
+ with st.spinner("Thinking..."):
125
+ response, sources = process_message(
126
+ query=user_input,
127
+ llm=llm,
128
+ index_name=INDEX_NAME,
129
+ embeddings=embeddings
130
+ )
131
+
132
+ if isinstance(response, str):
133
+ st.markdown(response)
134
+ st.session_state.messages.append({
135
+ "role": "assistant",
136
+ "content": response
137
+ })
138
+
139
+ # Display sources
140
+ display_sources(sources)
141
+ else:
142
+ st.error("Received an invalid response format")
143
+
144
+ # Footer
145
+ st.markdown("---")
146
+ st.markdown(
147
+ "Built with ❀️ using Streamlit + LangChain + OpenAI",
148
+ help="An AI-powered chatbot with RAG capabilities"
149
+ )
150
+
151
+ if __name__ == "__main__":
152
+ main()
old_scripts/new_streamlit.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from typing import List, Tuple, Optional
4
+ from pinecone import Pinecone
5
+ from langchain_pinecone import PineconeVectorStore
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain_openai import ChatOpenAI
8
+ from langchain_core.prompts import PromptTemplate
9
+ from dotenv import load_dotenv
10
+ from RAG import RAG
11
+ from bpl_scraper import DigitalCommonwealthScraper
12
+ import logging
13
+ import json
14
+ import shutil
15
+ from PIL import Image
16
+ import io
17
+
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO)
20
+ logger = logging.getLogger(__name__)
21
+
22
+ # Page configuration
23
+ st.set_page_config(
24
+ page_title="Boston Public Library Chatbot",
25
+ page_icon="πŸ€–",
26
+ layout="wide"
27
+ )
28
+
29
+ def initialize_models() -> Tuple[Optional[ChatOpenAI], HuggingFaceEmbeddings]:
30
+ """Initialize the language model and embeddings."""
31
+ try:
32
+ load_dotenv()
33
+
34
+ # Initialize OpenAI model
35
+ llm = ChatOpenAI(
36
+ model="gpt-4", # Changed from gpt-4o-mini which appears to be a typo
37
+ temperature=0,
38
+ timeout=60, # Added reasonable timeout
39
+ max_retries=2
40
+ )
41
+
42
+ # Initialize embeddings
43
+ embeddings = HuggingFaceEmbeddings(
44
+ model_name="sentence-transformers/all-MiniLM-L6-v2"
45
+ )
46
+
47
+ return llm, embeddings
48
+
49
+ except Exception as e:
50
+ logger.error(f"Error initializing models: {str(e)}")
51
+ st.error(f"Failed to initialize models: {str(e)}")
52
+ return None, None
53
+
54
+ def process_message(
55
+ query: str,
56
+ llm: ChatOpenAI,
57
+ index_name: str,
58
+ embeddings: HuggingFaceEmbeddings
59
+ ) -> Tuple[str, List]:
60
+ """Process the user message using the RAG system."""
61
+ try:
62
+ response, sources = RAG(
63
+ query=query,
64
+ llm=llm,
65
+ index_name=index_name,
66
+ embeddings=embeddings
67
+ )
68
+ return response, sources
69
+ except Exception as e:
70
+ logger.error(f"Error in process_message: {str(e)}")
71
+ return f"Error processing message: {str(e)}", []
72
+
73
+ def display_sources(sources: List) -> None:
74
+ """Display sources in expandable sections with proper formatting."""
75
+ if not sources:
76
+ st.info("No sources available for this response.")
77
+ return
78
+
79
+ st.subheader("Sources")
80
+ for i, doc in enumerate(sources, 1):
81
+ try:
82
+ with st.expander(f"Source {i}"):
83
+ if hasattr(doc, 'page_content'):
84
+ st.markdown(f"**Content:** {doc.page_content[0:100] + ' ...'}")
85
+ if hasattr(doc, 'metadata'):
86
+ for key, value in doc.metadata.items():
87
+ st.markdown(f"**{key.title()}:** {value}")
88
+
89
+ # Web Scraper to display images of sources
90
+ # Especially helpful if the sources are images themselves
91
+ # or are OCR'd text files
92
+ scraper = DigitalCommonwealthScraper()
93
+ images = scraper.extract_images(doc.metadata["URL"])
94
+ images = images[:1]
95
+
96
+ # If there are no images then don't display them
97
+ if not images:
98
+ st.warning("No images found on the page.")
99
+ return
100
+
101
+ # Download the images
102
+ # Delete the directory if it already exists
103
+ # to clear the existing cache of images for each listed source
104
+ output_dir = 'downloaded_images'
105
+ if os.path.exists(output_dir):
106
+ shutil.rmtree(output_dir)
107
+
108
+ # Download the main image to a local directory
109
+ downloaded_files = scraper.download_images(images)
110
+
111
+ # Display the image using st.image
112
+ # Display the title of the image using img.get
113
+ st.image(downloaded_files, width=400, caption=[
114
+ img.get('alt', f'Image {i+1}') for i, img in enumerate(images)
115
+ ])
116
+
117
+ else:
118
+ st.markdown(f"**Content:** {str(doc)}")
119
+
120
+ except Exception as e:
121
+ logger.error(f"Error displaying source {i}: {str(e)}")
122
+ st.error(f"Error displaying source {i}")
123
+
124
+
125
+ def main():
126
+ st.title("Boston Public Library RAG Chatbot")
127
+
128
+ # Initialize session state
129
+ if "messages" not in st.session_state:
130
+ st.session_state.messages = []
131
+
132
+ # Initialize models
133
+ llm, embeddings = initialize_models()
134
+ if not llm or not embeddings:
135
+ st.error("Failed to initialize the application. Please check the logs.")
136
+ return
137
+
138
+ # Constants
139
+ INDEX_NAME = 'bpl-rag'
140
+
141
+ # Display chat history
142
+ for message in st.session_state.messages:
143
+ with st.chat_message(message["role"]):
144
+ st.markdown(message["content"])
145
+
146
+ # Chat input
147
+ user_input = st.chat_input("Type your message here...")
148
+
149
+
150
+
151
+ if user_input:
152
+ # Display user message
153
+ with st.chat_message("user"):
154
+ st.markdown(user_input)
155
+ st.session_state.messages.append({"role": "user", "content": user_input})
156
+
157
+ # Process and display assistant response
158
+ with st.chat_message("assistant"):
159
+ with st.spinner("Thinking..."):
160
+ response, sources = process_message(
161
+ query=user_input,
162
+ llm=llm,
163
+ index_name=INDEX_NAME,
164
+ embeddings=embeddings
165
+ )
166
+
167
+ if isinstance(response, str):
168
+ st.markdown(response)
169
+ st.session_state.messages.append({
170
+ "role": "assistant",
171
+ "content": response
172
+ })
173
+
174
+ # Display sources
175
+ display_sources(sources)
176
+
177
+ else:
178
+ st.error("Received an invalid response format")
179
+
180
+ # Footer
181
+ st.markdown("---")
182
+ st.markdown(
183
+ "Built with ❀️ using Streamlit + LangChain + OpenAI",
184
+ help="An AI-powered chatbot with RAG capabilities"
185
+ )
186
+
187
+ if __name__ == "__main__":
188
+ main()
old_scripts/streamlit-rag-app.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ import os
4
+
5
+ import json
6
+
7
+ from dotenv import load_dotenv
8
+
9
+
10
+
11
+ # from langchain.chains import RetrievalQA
12
+
13
+ from langchain_community.vectorstores import FAISS
14
+
15
+ from langchain.text_splitter import CharacterTextSplitter
16
+
17
+ from langchain_openai import ChatOpenAI, OpenAIEmbeddings, OpenAI
18
+
19
+ from langchain.schema import Document
20
+
21
+ from langchain_huggingface import HuggingFaceEmbeddings
22
+
23
+ from langchain.chains.combine_documents import create_stuff_documents_chain
24
+
25
+ from langchain.chains.retrieval import create_retrieval_chain
26
+
27
+ from langchain_core.prompts import PromptTemplate
28
+
29
+
30
+
31
+ # Load environment variables
32
+
33
+ load_dotenv()
34
+
35
+
36
+
37
+ # Get the OpenAI API key from the environment
38
+
39
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
40
+
41
+ if not OPENAI_API_KEY:
42
+
43
+ st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
44
+
45
+
46
+
47
+ # Initialize session state variables
48
+
49
+ if 'vector_store' not in st.session_state:
50
+
51
+ st.session_state.vector_store = None
52
+
53
+ # if 'qa_chain' not in st.session_state:
54
+
55
+ # st.session_state.qa_chain = None
56
+
57
+
58
+
59
+
60
+
61
+ # def setup_qa_chain(vector_store):
62
+
63
+ # """Set up the QA chain with a retriever."""
64
+
65
+ # retriever = vector_store.as_retriever(search_kwargs={"k": 3})
66
+
67
+ # llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
68
+
69
+ # qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
70
+
71
+ # return qa_chain
72
+
73
+
74
+
75
+ prompt_template = PromptTemplate.from_template("Answer the following query based on a number of context documents Query:{query},Context:{context},Answer:")
76
+
77
+
78
+
79
+ def main():
80
+
81
+ # Set page title and header
82
+
83
+ llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
84
+
85
+ st.set_page_config(page_title="LibRAG", page_icon="πŸ“š")
86
+
87
+ st.title("Boston Public Library Database πŸ“š")
88
+
89
+
90
+
91
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
92
+
93
+
94
+
95
+ # Sidebar for initialization
96
+
97
+ # st.sidebar.header("Initialize Knowledge Base")
98
+
99
+ # if st.sidebar.button("Load Data"):
100
+
101
+ # try:
102
+
103
+ # st.session_state.vector_store = FAISS.load_local(
104
+
105
+ # "vector-store", embeddings, allow_dangerous_deserialization=True
106
+
107
+ # )
108
+
109
+ # st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
110
+
111
+ # st.sidebar.success("Knowledge base loaded successfully!")
112
+
113
+ # except Exception as e:
114
+
115
+ # st.sidebar.error(f"Error loading data: {e}")
116
+
117
+
118
+
119
+ st.session_state.vector_store = FAISS.load_local("vector-store", embeddings, allow_dangerous_deserialization=True)
120
+
121
+ st.session_state.combine_docs_chain = create_stuff_documents_chain(llm, prompt_template)
122
+
123
+ st.session_stateretrieval_chain = create_retrieval_chain(st.session_state.vector_store.as_retriever(search_kwargs={"k": 3}), combine_docs_chain)
124
+
125
+ # st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
126
+
127
+ # Query input and processing
128
+
129
+ st.header("Ask a Question")
130
+
131
+ query = st.text_input("Enter your question about BPL's database")
132
+
133
+ response = llm.invoke()
134
+
135
+ if query:
136
+
137
+ # Check if vector store and QA chain are initialized
138
+
139
+ if st.session_state.response is None:
140
+
141
+ st.warning("Please load the knowledge base first using the sidebar.")
142
+
143
+ else:
144
+
145
+ # Run the query
146
+
147
+ try:
148
+
149
+ st.session_state.response = retrieval_chain.invoke({"input": f"{query}"})
150
+
151
+
152
+
153
+ # Display answer
154
+
155
+ st.subheader("Answer")
156
+
157
+ st.write(response["result"])
158
+
159
+
160
+
161
+ # Display sources
162
+
163
+ st.subheader("Sources")
164
+
165
+ sources = response["source_documents"]
166
+
167
+ for i, doc in enumerate(sources, 1):
168
+
169
+ with st.expander(f"Source {i}"):
170
+
171
+ st.write(f"**Content:** {doc.page_content}")
172
+
173
+ st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
174
+
175
+
176
+
177
+ except Exception as e:
178
+
179
+ st.error(f"An error occurred: {e}")
180
+
181
+
182
+
183
+ if __name__ == "__main__":
184
+
185
+ main()
old_scripts/test_streamlit.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import sys
3
+
4
+ st.set_option('client.showErrorDetails', True)
5
+
6
+ def main():
7
+ try:
8
+ st.title("Test App")
9
+ st.write("Hello World!")
10
+ except Exception as e:
11
+ st.error(f"An error occurred: {str(e)}")
12
+ print(f"Error: {str(e)}", file=sys.stderr)
13
+
14
+ if __name__ == "__main__":
15
+ main()