File size: 22,221 Bytes
3a69c73 9676abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import streamlit as st
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
.benchmark-table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
}
.benchmark-table th, .benchmark-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.benchmark-table th {
background-color: #4A90E2;
color: white;
}
.benchmark-table td {
background-color: #f2f2f2;
}
</style>
""", unsafe_allow_html=True)
# Main Title
st.markdown('<div class="main-title">Detect Entities (66-labeled) in General Scope</div>', unsafe_allow_html=True)
# Description
st.markdown("""
<div class="section">
<p>This app utilizes the <strong>nerdl_fewnerd_subentity_100d</strong> model, which is trained on the Few-NERD/inter public dataset to detect 66 entities with high accuracy. The model is based on 100d GloVe embeddings, ensuring robust entity detection.</p>
</div>
""", unsafe_allow_html=True)
# What is Entity Recognition
st.markdown('<div class="sub-title">What is Entity Recognition?</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p><strong>Entity Recognition</strong> is a task in Natural Language Processing (NLP) that involves identifying and classifying named entities in text into predefined categories. For general texts, this model focuses on detecting a wide range of entities, which are crucial for understanding and analyzing diverse content.</p>
</div>
""", unsafe_allow_html=True)
# Model Importance and Applications
st.markdown('<div class="sub-title">Model Importance and Applications</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The <strong>nerdl_fewnerd_subentity_100d</strong> model is highly effective for extracting named entities from general texts. Its applications include:</p>
<ul>
<li><strong>Text Analysis:</strong> The model can be used to identify and categorize mentions of a wide variety of entities in text documents, which is valuable for text mining and information retrieval.</li>
<li><strong>Content Classification:</strong> By recognizing key entities, the model helps in categorizing content based on entity types, which is useful for organizing and filtering large volumes of data.</li>
<li><strong>Knowledge Graph Construction:</strong> Companies can use the model to extract entities and build comprehensive knowledge graphs from textual data.</li>
<li><strong>Research and Development:</strong> The model aids in identifying specific entities in scientific and technical documents, facilitating better research and analysis.</li>
</ul>
<p>Why use the <strong>nerdl_fewnerd_subentity_100d</strong> model?</p>
<ul>
<li><strong>Pre-trained on Few-NERD Dataset:</strong> The model is specifically trained on diverse general data, making it well-suited for handling a wide range of text types.</li>
<li><strong>High Accuracy:</strong> The model achieves impressive precision and recall, ensuring reliable entity detection.</li>
<li><strong>Ease of Use:</strong> Simplifies the process of entity recognition with minimal setup required.</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Predicted Entities
st.markdown('<div class="sub-title">Predicted Entities</div>', unsafe_allow_html=True)
# st.markdown("""
# <div class="section">
# <ul>
# <li><strong>building-theater</strong></li>
# <li><strong>art-other</strong></li>
# <li><strong>location-bodiesofwater</strong></li>
# <li><strong>other-god</strong></li>
# <li><strong>organization-politicalparty</strong></li>
# <li><strong>product-other</strong></li>
# <li><strong>building-sportsfacility</strong></li>
# <li><strong>building-restaurant</strong></li>
# <li><strong>organization-sportsleague</strong></li>
# <li><strong>event-election</strong></li>
# <li><strong>organization-media/newspaper</strong></li>
# <li><strong>product-software</strong></li>
# <li><strong>other-educationaldegree</strong></li>
# <li><strong>person-politician</strong></li>
# <li><strong>person-soldier</strong></li>
# <li><strong>other-disease</strong></li>
# <li><strong>product-airplane</strong></li>
# <li><strong>person-athlete</strong></li>
# <li><strong>location-mountain</strong></li>
# <li><strong>organization-company</strong></li>
# <li><strong>other-biologything</strong></li>
# <li><strong>location-other</strong></li>
# <li><strong>other-livingthing</strong></li>
# <li><strong>person-actor</strong></li>
# <li><strong>organization-other</strong></li>
# <li><strong>event-protest</strong></li>
# <li><strong>art-film</strong></li>
# <li><strong>other-award</strong></li>
# <li><strong>other-astronomything</strong></li>
# <li><strong>building-airport</strong></li>
# <li><strong>product-food</strong></li>
# <li><strong>person-other</strong></li>
# <li><strong>event-disaster</strong></li>
# <li><strong>product-weapon</strong></li>
# <li><strong>event-sportsevent</strong></li>
# <li><strong>location-park</strong></li>
# <li><strong>product-ship</strong></li>
# <li><strong>building-library</strong></li>
# <li><strong>art-painting</strong></li>
# <li><strong>building-other</strong></li>
# <li><strong>other-currency</strong></li>
# <li><strong>organization-education</strong></li>
# <li><strong>person-scholar</strong></li>
# <li><strong>organization-showorganization</strong></li>
# <li><strong>person-artist/author</strong></li>
# <li><strong>product-train</strong></li>
# <li><strong>location-GPE</strong></li>
# <li><strong>product-car</strong></li>
# <li><strong>art-writtenart</strong></li>
# <li><strong>event-attack/battle/war/militaryconflict</strong></li>
# <li><strong>other-law</strong></li>
# <li><strong>other-medical</strong></li>
# <li><strong>organization-sportsteam</strong></li>
# <li><strong>art-broadcastprogram</strong></li>
# <li><strong>art-music</strong></li>
# <li><strong>organization-government/governmentagency</strong></li>
# <li><strong>other-language</strong></li>
# <li><strong>event-other</strong></li>
# <li><strong>person-director</strong></li>
# <li><strong>other-chemicalthing</strong></li>
# <li><strong>product-game</strong></li>
# <li><strong>organization-religion</strong></li>
# <li><strong>location-road/railway/highway/transit</strong></li>
# <li><strong>location-island</strong></li>
# <li><strong>building-hotel</strong></li>
# <li><strong>building-hospital</strong></li>
# </ul>
# </div>
# """, unsafe_allow_html=True)
st.markdown("""<div class="section"><p><code class="language-plaintext highlighter-rouge">building-theater</code>, <code class="language-plaintext highlighter-rouge">art-other</code>, <code class="language-plaintext highlighter-rouge">location-bodiesofwater</code>, <code class="language-plaintext highlighter-rouge">other-god</code>, <code class="language-plaintext highlighter-rouge">organization-politicalparty</code>, <code class="language-plaintext highlighter-rouge">product-other</code>, <code class="language-plaintext highlighter-rouge">building-sportsfacility</code>, <code class="language-plaintext highlighter-rouge">building-restaurant</code>, <code class="language-plaintext highlighter-rouge">organization-sportsleague</code>, <code class="language-plaintext highlighter-rouge">event-election</code>, <code class="language-plaintext highlighter-rouge">organization-media/newspaper</code>, <code class="language-plaintext highlighter-rouge">product-software</code>, <code class="language-plaintext highlighter-rouge">other-educationaldegree</code>, <code class="language-plaintext highlighter-rouge">person-politician</code>, <code class="language-plaintext highlighter-rouge">person-soldier</code>, <code class="language-plaintext highlighter-rouge">other-disease</code>, <code class="language-plaintext highlighter-rouge">product-airplane</code>, <code class="language-plaintext highlighter-rouge">person-athlete</code>, <code class="language-plaintext highlighter-rouge">location-mountain</code>, <code class="language-plaintext highlighter-rouge">organization-company</code>, <code class="language-plaintext highlighter-rouge">other-biologything</code>, <code class="language-plaintext highlighter-rouge">location-other</code>, <code class="language-plaintext highlighter-rouge">other-livingthing</code>, <code class="language-plaintext highlighter-rouge">person-actor</code>, <code class="language-plaintext highlighter-rouge">organization-other</code>, <code class="language-plaintext highlighter-rouge">event-protest</code>, <code class="language-plaintext highlighter-rouge">art-film</code>, <code class="language-plaintext highlighter-rouge">other-award</code>, <code class="language-plaintext highlighter-rouge">other-astronomything</code>, <code class="language-plaintext highlighter-rouge">building-airport</code>, <code class="language-plaintext highlighter-rouge">product-food</code>, <code class="language-plaintext highlighter-rouge">person-other</code>, <code class="language-plaintext highlighter-rouge">event-disaster</code>, <code class="language-plaintext highlighter-rouge">product-weapon</code>, <code class="language-plaintext highlighter-rouge">event-sportsevent</code>, <code class="language-plaintext highlighter-rouge">location-park</code>, <code class="language-plaintext highlighter-rouge">product-ship</code>, <code class="language-plaintext highlighter-rouge">building-library</code>, <code class="language-plaintext highlighter-rouge">art-painting</code>, <code class="language-plaintext highlighter-rouge">building-other</code>, <code class="language-plaintext highlighter-rouge">other-currency</code>, <code class="language-plaintext highlighter-rouge">organization-education</code>, <code class="language-plaintext highlighter-rouge">person-scholar</code>, <code class="language-plaintext highlighter-rouge">organization-showorganization</code>, <code class="language-plaintext highlighter-rouge">person-artist/author</code>, <code class="language-plaintext highlighter-rouge">product-train</code>, <code class="language-plaintext highlighter-rouge">location-GPE</code>, <code class="language-plaintext highlighter-rouge">product-car</code>, <code class="language-plaintext highlighter-rouge">art-writtenart</code>, <code class="language-plaintext highlighter-rouge">event-attack/battle/war/militaryconflict</code>, <code class="language-plaintext highlighter-rouge">other-law</code>, <code class="language-plaintext highlighter-rouge">other-medical</code>, <code class="language-plaintext highlighter-rouge">organization-sportsteam</code>, <code class="language-plaintext highlighter-rouge">art-broadcastprogram</code>, <code class="language-plaintext highlighter-rouge">art-music</code>, <code class="language-plaintext highlighter-rouge">organization-government/governmentagency</code>, <code class="language-plaintext highlighter-rouge">other-language</code>, <code class="language-plaintext highlighter-rouge">event-other</code>, <code class="language-plaintext highlighter-rouge">person-director</code>, <code class="language-plaintext highlighter-rouge">other-chemicalthing</code>, <code class="language-plaintext highlighter-rouge">product-game</code>, <code class="language-plaintext highlighter-rouge">organization-religion</code>, <code class="language-plaintext highlighter-rouge">location-road/railway/highway/transit</code>, <code class="language-plaintext highlighter-rouge">location-island</code>, <code class="language-plaintext highlighter-rouge">building-hotel</code>, <code class="language-plaintext highlighter-rouge">building-hospital</code></p></div>""", unsafe_allow_html=True)
# How to Use the Model
st.markdown('<div class="sub-title">How to Use the Model</div>', unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from pyspark.sql.functions import col, expr
# Load the pre-trained model
document_assembler = DocumentAssembler() \\
.setInputCol("text") \\
.setOutputCol("document")
sentence_detector = SentenceDetector() \\
.setInputCols(["document"]) \\
.setOutputCol("sentence")
tokenizer = Tokenizer() \\
.setInputCols(["sentence"]) \\
.setOutputCol("token")
embeddings = WordEmbeddingsModel.pretrained("glove_100d", "en")\\
.setInputCols("sentence", "token") \\
.setOutputCol("embeddings")
ner_tagger = NerDLModel.pretrained("nerdl_fewnerd_subentity_100d", "en") \\
.setInputCols(['sentence', 'token', 'embeddings']) \\
.setOutputCol("ner")
ner_converter = NerConverter() \\
.setInputCols(["document", "token", "ner"]) \\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_tagger,
ner_converter
])
# Sample text
text = """
In 2023, Apple Inc. announced the release of their new iPhone 15 at a major event held in San Francisco.
The announcement was made by Tim Cook, the CEO of Apple, who highlighted the innovative features of the device,
including its advanced camera system and improved battery life. The event took place on September 12, 2023,
and was streamed live on the company's official website.
During the event, several prominent tech bloggers, such as John Doe from TechCrunch and Jane Smith from The Verge,
were present to cover the announcement. Additionally, the event featured a surprise appearance by popular musician
Taylor Swift, who performed her hit single "Anti-Hero." The new iPhone 15 will be available for pre-order starting
on September 15, 2023, and is expected to hit the stores on September 22, 2023.
"""
# Create a DataFrame with the text
data = spark.createDataFrame([[text]]).toDF("text")
# Apply the pipeline to the data
model = pipeline.fit(data)
result = model.transform(data)
# Display results
result.select(
expr("explode(ner_chunk) as ner_chunk")
).select(
col("ner_chunk.result").alias("chunk"),
col("ner_chunk.metadata.entity").alias("ner_label")
).show(truncate=False)
''', language='python')
st.text("""
+-------------+----------------------------+
|chunk |ner_label |
+-------------+----------------------------+
|Apple Inc. |organization-company |
|iPhone 15 |product-other |
|San Francisco|location-GPE |
|Apple |organization-company |
|company's |location-GPE |
|TechCrunch |organization-media/newspaper|
|Taylor Swift |person-artist/author |
|iPhone 15 |product-other |
+-------------+----------------------------+
""")
# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""
<table class="benchmark-table">
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
<tr>
<td><strong>Model Name</strong></td>
<td>nerdl_fewnerd_subentity_100d</td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>ner</td>
</tr>
<tr>
<td><strong>Compatibility</strong></td>
<td>Spark NLP 3.1.1+</td>
</tr>
<tr>
<td><strong>License</strong></td>
<td>Open Source</td>
</tr>
<tr>
<td><strong>Edition</strong></td>
<td>Official</td>
</tr>
<tr>
<td><strong>Input Labels</strong></td>
<td>[sentence, token, embeddings]</td>
</tr>
<tr>
<td><strong>Output Labels</strong></td>
<td>[ner]</td>
</tr>
<tr>
<td><strong>Language</strong></td>
<td>en</td>
</tr>
</table>
""", unsafe_allow_html=True)
# Data Source Information
st.markdown('<div class="sub-title">Data Source Information</div>', unsafe_allow_html=True)
st.markdown("""
<table class="benchmark-table">
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
<tr>
<td><strong>Dataset</strong></td>
<td>Few-NERD: A Few-shot Named Entity Recognition Dataset</td>
</tr>
<tr>
<td><strong>Authors</strong></td>
<td>Ding, Ning; Xu, Guangwei; Chen, Yulin; Wang, Xiaobin; Han, Xu; Xie, Pengjun; Zheng, Hai-Tao; Liu, Zhiyuan</td>
</tr>
<tr>
<td><strong>Conference</strong></td>
<td>ACL-IJCNL 2021</td>
</tr>
</table>
""", unsafe_allow_html=True)
# Benchmarking Results Description
st.markdown('<div class="sub-title">Benchmarking Results</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<table class="benchmark-table">
<thead>
<tr>
<th>Metric</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>89.45%</td>
</tr>
<tr>
<td>Recall</td>
<td>91.67%</td>
</tr>
<tr>
<td>F1-Score</td>
<td>90.55%</td>
</tr>
</tbody>
</table>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The benchmarking results highlight the performance of the <strong>nerdl_fewnerd_subentity_100d</strong> model. The metrics used are:</p>
<ul>
<li><strong>Precision:</strong> The percentage of correctly identified entities out of all entities identified by the model.</li>
<li><strong>Recall:</strong> The percentage of correctly identified entities out of all entities that should have been identified.</li>
<li><strong>F1-Score:</strong> The harmonic mean of precision and recall, providing a balanced measure of the model's performance.</li>
</ul>
<p>The scores indicate that the model achieves high accuracy and reliability in detecting entities within general scope texts.</p>
</div>
""", unsafe_allow_html=True)
# Conclusion
st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The <strong>nerdl_fewnerd_subentity_100d</strong> model is a powerful tool for entity recognition in general texts, offering high accuracy across a diverse set of entities. Its robust performance, as demonstrated by the benchmark results, makes it suitable for various applications such as text analysis, content classification, and knowledge graph construction. By utilizing this model, users can effectively extract and categorize entities, enhancing their ability to analyze and understand textual data.</p>
<p>For more information and to access the model, visit the <a href="https://nlp.johnsnowlabs.com/2023/01/30/nerdl_fewnerd_subentity_100d_en.html" class="link">John Snow Labs Model Page</a> or the <a href="https://github.com/JohnSnowLabs/spark-nlp" class="link">Spark NLP GitHub Repository</a>.</p>
</div>
""", unsafe_allow_html=True)
# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li>
<li>Model Used: <a class="link" href="https://sparknlp.org/2021/07/22/nerdl_fewnerd_subentity_100d_en.html" rel="noopener">nerdl_fewnerd_subentity_100d_en</a></li>
<li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>
<li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True) |