File size: 5,318 Bytes
9676abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import sparknlp
import os
import pandas as pd

from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from annotated_text import annotated_text

# Page configuration
st.set_page_config(
    layout="wide", 
    initial_sidebar_state="auto"
)

# CSS for styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .section {

            background-color: #f9f9f9;

            padding: 10px;

            border-radius: 10px;

            margin-top: 10px;

        }

        .section p, .section ul {

            color: #666666;

        }

    </style>

""", unsafe_allow_html=True)

@st.cache_resource
def init_spark():
    return sparknlp.start()

@st.cache_resource
def create_pipeline(model):
    document_assembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

    sentence_detector = SentenceDetector() \
        .setInputCols(["document"]) \
        .setOutputCol("sentence")

    tokenizer = Tokenizer() \
        .setInputCols(["sentence"]) \
        .setOutputCol("token")

    embeddings = WordEmbeddingsModel.pretrained("glove_100d", "en")\
        .setInputCols("sentence", "token") \
        .setOutputCol("embeddings")

    ner_tagger = NerDLModel.pretrained("nerdl_fewnerd_subentity_100d", "en") \
        .setInputCols(['sentence', 'token', 'embeddings']) \
        .setOutputCol("ner")

    ner_converter = NerConverter() \
        .setInputCols(["document", "token", "ner"]) \
        .setOutputCol("ner_chunk")

    pipeline = Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_tagger,
        ner_converter
    ])
    return pipeline

def fit_data(pipeline, data):
  empty_df = spark.createDataFrame([['']]).toDF('text')
  pipeline_model = pipeline.fit(empty_df)
  model = LightPipeline(pipeline_model)
  result = model.fullAnnotate(data)
  return result

def annotate(data):
    document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"]
    annotated_words = []
    for chunk, label in zip(chunks, labels):
        parts = document.split(chunk, 1)
        if parts[0]:
            annotated_words.append(parts[0])
        annotated_words.append((chunk, label))
        document = parts[1]
    if document:
        annotated_words.append(document)
    annotated_text(*annotated_words)

# Sidebar content
model = st.sidebar.selectbox(
    "Choose the pretrained model",
    ["nerdl_fewnerd_subentity_100d", "nerdl_fewnerd_100d"],
    help="For more info about the models visit: https://sparknlp.org/models"
)

# Set up the page layout
title, sub_title = ("Detect 60+ General Entities", "This model is trained on Few-NERD/inter public dataset and it extracts 66 entities that are in general scope.") if model == "nerdl_fewnerd_subentity_100d" else ("Detect 8 General Entities", "This model is trained on Few-NERD/inter public dataset and it extracts 8 entities that are in general scope. The Predicted Entities are:")

st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True)
st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)

# Reference notebook link in sidebar
link = """

<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/NER_FewNERD.ipynb">

    <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>

</a>

"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)

# Load examples
folder_path = f"inputs/{model}"
examples = [
    lines[1].strip() 
    for filename in os.listdir(folder_path) 
    if filename.endswith('.txt') 
    for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] 
    if len(lines) >= 2
]

selected_text = st.selectbox("Select an example", examples)
custom_input = st.text_input("Try it with your own Sentence!")

text_to_analyze = custom_input if custom_input else selected_text

st.subheader('Full example text')
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>"""
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)

# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, text_to_analyze)

# Display matched sentence
st.subheader("Processed output:")

results = {
    'Document': output[0]['document'][0].result,
    'NER Chunk': [n.result for n in output[0]['ner_chunk']],
    "NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']]
}

annotate(results)

with st.expander("View DataFrame"):
    df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']})
    df.index += 1
    st.dataframe(df)