File size: 22,221 Bytes
3a69c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9676abf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import streamlit as st

# Custom CSS for better styling
st.markdown("""
    <style>
        .main-title {
            font-size: 36px;
            color: #4A90E2;
            font-weight: bold;
            text-align: center;
        }
        .sub-title {
            font-size: 24px;
            color: #4A90E2;
            margin-top: 20px;
        }
        .section {
            background-color: #f9f9f9;
            padding: 15px;
            border-radius: 10px;
            margin-top: 20px;
        }
        .section h2 {
            font-size: 22px;
            color: #4A90E2;
        }
        .section p, .section ul {
            color: #666666;
        }
        .link {
            color: #4A90E2;
            text-decoration: none;
        }
        .benchmark-table {
            width: 100%;
            border-collapse: collapse;
            margin-top: 20px;
        }
        .benchmark-table th, .benchmark-table td {
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }
        .benchmark-table th {
            background-color: #4A90E2;
            color: white;
        }
        .benchmark-table td {
            background-color: #f2f2f2;
        }
    </style>
""", unsafe_allow_html=True)

# Main Title
st.markdown('<div class="main-title">Detect Entities (66-labeled) in General Scope</div>', unsafe_allow_html=True)

# Description
st.markdown("""
<div class="section">
    <p>This app utilizes the <strong>nerdl_fewnerd_subentity_100d</strong> model, which is trained on the Few-NERD/inter public dataset to detect 66 entities with high accuracy. The model is based on 100d GloVe embeddings, ensuring robust entity detection.</p>
</div>
""", unsafe_allow_html=True)

# What is Entity Recognition
st.markdown('<div class="sub-title">What is Entity Recognition?</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
    <p><strong>Entity Recognition</strong> is a task in Natural Language Processing (NLP) that involves identifying and classifying named entities in text into predefined categories. For general texts, this model focuses on detecting a wide range of entities, which are crucial for understanding and analyzing diverse content.</p>
</div>
""", unsafe_allow_html=True)

# Model Importance and Applications
st.markdown('<div class="sub-title">Model Importance and Applications</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
    <p>The <strong>nerdl_fewnerd_subentity_100d</strong> model is highly effective for extracting named entities from general texts. Its applications include:</p>
    <ul>
        <li><strong>Text Analysis:</strong> The model can be used to identify and categorize mentions of a wide variety of entities in text documents, which is valuable for text mining and information retrieval.</li>
        <li><strong>Content Classification:</strong> By recognizing key entities, the model helps in categorizing content based on entity types, which is useful for organizing and filtering large volumes of data.</li>
        <li><strong>Knowledge Graph Construction:</strong> Companies can use the model to extract entities and build comprehensive knowledge graphs from textual data.</li>
        <li><strong>Research and Development:</strong> The model aids in identifying specific entities in scientific and technical documents, facilitating better research and analysis.</li>
    </ul>
    <p>Why use the <strong>nerdl_fewnerd_subentity_100d</strong> model?</p>
    <ul>
        <li><strong>Pre-trained on Few-NERD Dataset:</strong> The model is specifically trained on diverse general data, making it well-suited for handling a wide range of text types.</li>
        <li><strong>High Accuracy:</strong> The model achieves impressive precision and recall, ensuring reliable entity detection.</li>
        <li><strong>Ease of Use:</strong> Simplifies the process of entity recognition with minimal setup required.</li>
    </ul>
</div>
""", unsafe_allow_html=True)

# Predicted Entities
st.markdown('<div class="sub-title">Predicted Entities</div>', unsafe_allow_html=True)
# st.markdown("""
# <div class="section">
#     <ul>
#         <li><strong>building-theater</strong></li>
#         <li><strong>art-other</strong></li>
#         <li><strong>location-bodiesofwater</strong></li>
#         <li><strong>other-god</strong></li>
#         <li><strong>organization-politicalparty</strong></li>
#         <li><strong>product-other</strong></li>
#         <li><strong>building-sportsfacility</strong></li>
#         <li><strong>building-restaurant</strong></li>
#         <li><strong>organization-sportsleague</strong></li>
#         <li><strong>event-election</strong></li>
#         <li><strong>organization-media/newspaper</strong></li>
#         <li><strong>product-software</strong></li>
#         <li><strong>other-educationaldegree</strong></li>
#         <li><strong>person-politician</strong></li>
#         <li><strong>person-soldier</strong></li>
#         <li><strong>other-disease</strong></li>
#         <li><strong>product-airplane</strong></li>
#         <li><strong>person-athlete</strong></li>
#         <li><strong>location-mountain</strong></li>
#         <li><strong>organization-company</strong></li>
#         <li><strong>other-biologything</strong></li>
#         <li><strong>location-other</strong></li>
#         <li><strong>other-livingthing</strong></li>
#         <li><strong>person-actor</strong></li>
#         <li><strong>organization-other</strong></li>
#         <li><strong>event-protest</strong></li>
#         <li><strong>art-film</strong></li>
#         <li><strong>other-award</strong></li>
#         <li><strong>other-astronomything</strong></li>
#         <li><strong>building-airport</strong></li>
#         <li><strong>product-food</strong></li>
#         <li><strong>person-other</strong></li>
#         <li><strong>event-disaster</strong></li>
#         <li><strong>product-weapon</strong></li>
#         <li><strong>event-sportsevent</strong></li>
#         <li><strong>location-park</strong></li>
#         <li><strong>product-ship</strong></li>
#         <li><strong>building-library</strong></li>
#         <li><strong>art-painting</strong></li>
#         <li><strong>building-other</strong></li>
#         <li><strong>other-currency</strong></li>
#         <li><strong>organization-education</strong></li>
#         <li><strong>person-scholar</strong></li>
#         <li><strong>organization-showorganization</strong></li>
#         <li><strong>person-artist/author</strong></li>
#         <li><strong>product-train</strong></li>
#         <li><strong>location-GPE</strong></li>
#         <li><strong>product-car</strong></li>
#         <li><strong>art-writtenart</strong></li>
#         <li><strong>event-attack/battle/war/militaryconflict</strong></li>
#         <li><strong>other-law</strong></li>
#         <li><strong>other-medical</strong></li>
#         <li><strong>organization-sportsteam</strong></li>
#         <li><strong>art-broadcastprogram</strong></li>
#         <li><strong>art-music</strong></li>
#         <li><strong>organization-government/governmentagency</strong></li>
#         <li><strong>other-language</strong></li>
#         <li><strong>event-other</strong></li>
#         <li><strong>person-director</strong></li>
#         <li><strong>other-chemicalthing</strong></li>
#         <li><strong>product-game</strong></li>
#         <li><strong>organization-religion</strong></li>
#         <li><strong>location-road/railway/highway/transit</strong></li>
#         <li><strong>location-island</strong></li>
#         <li><strong>building-hotel</strong></li>
#         <li><strong>building-hospital</strong></li>
#     </ul>
# </div>
# """, unsafe_allow_html=True)

st.markdown("""<div class="section"><p><code class="language-plaintext highlighter-rouge">building-theater</code>, <code class="language-plaintext highlighter-rouge">art-other</code>, <code class="language-plaintext highlighter-rouge">location-bodiesofwater</code>, <code class="language-plaintext highlighter-rouge">other-god</code>, <code class="language-plaintext highlighter-rouge">organization-politicalparty</code>, <code class="language-plaintext highlighter-rouge">product-other</code>, <code class="language-plaintext highlighter-rouge">building-sportsfacility</code>, <code class="language-plaintext highlighter-rouge">building-restaurant</code>, <code class="language-plaintext highlighter-rouge">organization-sportsleague</code>, <code class="language-plaintext highlighter-rouge">event-election</code>, <code class="language-plaintext highlighter-rouge">organization-media/newspaper</code>, <code class="language-plaintext highlighter-rouge">product-software</code>, <code class="language-plaintext highlighter-rouge">other-educationaldegree</code>, <code class="language-plaintext highlighter-rouge">person-politician</code>, <code class="language-plaintext highlighter-rouge">person-soldier</code>, <code class="language-plaintext highlighter-rouge">other-disease</code>, <code class="language-plaintext highlighter-rouge">product-airplane</code>, <code class="language-plaintext highlighter-rouge">person-athlete</code>, <code class="language-plaintext highlighter-rouge">location-mountain</code>, <code class="language-plaintext highlighter-rouge">organization-company</code>, <code class="language-plaintext highlighter-rouge">other-biologything</code>, <code class="language-plaintext highlighter-rouge">location-other</code>, <code class="language-plaintext highlighter-rouge">other-livingthing</code>, <code class="language-plaintext highlighter-rouge">person-actor</code>, <code class="language-plaintext highlighter-rouge">organization-other</code>, <code class="language-plaintext highlighter-rouge">event-protest</code>, <code class="language-plaintext highlighter-rouge">art-film</code>, <code class="language-plaintext highlighter-rouge">other-award</code>, <code class="language-plaintext highlighter-rouge">other-astronomything</code>, <code class="language-plaintext highlighter-rouge">building-airport</code>, <code class="language-plaintext highlighter-rouge">product-food</code>, <code class="language-plaintext highlighter-rouge">person-other</code>, <code class="language-plaintext highlighter-rouge">event-disaster</code>, <code class="language-plaintext highlighter-rouge">product-weapon</code>, <code class="language-plaintext highlighter-rouge">event-sportsevent</code>, <code class="language-plaintext highlighter-rouge">location-park</code>, <code class="language-plaintext highlighter-rouge">product-ship</code>, <code class="language-plaintext highlighter-rouge">building-library</code>, <code class="language-plaintext highlighter-rouge">art-painting</code>, <code class="language-plaintext highlighter-rouge">building-other</code>, <code class="language-plaintext highlighter-rouge">other-currency</code>, <code class="language-plaintext highlighter-rouge">organization-education</code>, <code class="language-plaintext highlighter-rouge">person-scholar</code>, <code class="language-plaintext highlighter-rouge">organization-showorganization</code>, <code class="language-plaintext highlighter-rouge">person-artist/author</code>, <code class="language-plaintext highlighter-rouge">product-train</code>, <code class="language-plaintext highlighter-rouge">location-GPE</code>, <code class="language-plaintext highlighter-rouge">product-car</code>, <code class="language-plaintext highlighter-rouge">art-writtenart</code>, <code class="language-plaintext highlighter-rouge">event-attack/battle/war/militaryconflict</code>, <code class="language-plaintext highlighter-rouge">other-law</code>, <code class="language-plaintext highlighter-rouge">other-medical</code>, <code class="language-plaintext highlighter-rouge">organization-sportsteam</code>, <code class="language-plaintext highlighter-rouge">art-broadcastprogram</code>, <code class="language-plaintext highlighter-rouge">art-music</code>, <code class="language-plaintext highlighter-rouge">organization-government/governmentagency</code>, <code class="language-plaintext highlighter-rouge">other-language</code>, <code class="language-plaintext highlighter-rouge">event-other</code>, <code class="language-plaintext highlighter-rouge">person-director</code>, <code class="language-plaintext highlighter-rouge">other-chemicalthing</code>, <code class="language-plaintext highlighter-rouge">product-game</code>, <code class="language-plaintext highlighter-rouge">organization-religion</code>, <code class="language-plaintext highlighter-rouge">location-road/railway/highway/transit</code>, <code class="language-plaintext highlighter-rouge">location-island</code>, <code class="language-plaintext highlighter-rouge">building-hotel</code>, <code class="language-plaintext highlighter-rouge">building-hospital</code></p></div>""", unsafe_allow_html=True)

# How to Use the Model
st.markdown('<div class="sub-title">How to Use the Model</div>', unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from pyspark.sql.functions import col, expr

# Load the pre-trained model
document_assembler = DocumentAssembler() \\
    .setInputCol("text") \\
    .setOutputCol("document")

sentence_detector = SentenceDetector() \\
    .setInputCols(["document"]) \\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \\
    .setInputCols(["sentence"]) \\
    .setOutputCol("token")

embeddings = WordEmbeddingsModel.pretrained("glove_100d", "en")\\
    .setInputCols("sentence", "token") \\
    .setOutputCol("embeddings")

ner_tagger = NerDLModel.pretrained("nerdl_fewnerd_subentity_100d", "en") \\
    .setInputCols(['sentence', 'token', 'embeddings']) \\
    .setOutputCol("ner")

ner_converter = NerConverter() \\
    .setInputCols(["document", "token", "ner"]) \\
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[
    document_assembler,
    sentence_detector,
    tokenizer,
    embeddings,
    ner_tagger,
    ner_converter
])

# Sample text
text = """
  In 2023, Apple Inc. announced the release of their new iPhone 15 at a major event held in San Francisco. 
  The announcement was made by Tim Cook, the CEO of Apple, who highlighted the innovative features of the device, 
  including its advanced camera system and improved battery life. The event took place on September 12, 2023, 
  and was streamed live on the company's official website. 
  During the event, several prominent tech bloggers, such as John Doe from TechCrunch and Jane Smith from The Verge, 
  were present to cover the announcement. Additionally, the event featured a surprise appearance by popular musician 
  Taylor Swift, who performed her hit single "Anti-Hero." The new iPhone 15 will be available for pre-order starting 
  on September 15, 2023, and is expected to hit the stores on September 22, 2023.
"""

# Create a DataFrame with the text
data = spark.createDataFrame([[text]]).toDF("text")

# Apply the pipeline to the data
model = pipeline.fit(data)
result = model.transform(data)

# Display results
result.select(
    expr("explode(ner_chunk) as ner_chunk")
).select(
    col("ner_chunk.result").alias("chunk"),
    col("ner_chunk.metadata.entity").alias("ner_label")
).show(truncate=False)
''', language='python')

st.text("""
+-------------+----------------------------+
|chunk        |ner_label                   |
+-------------+----------------------------+
|Apple Inc.   |organization-company        |
|iPhone 15    |product-other               |
|San Francisco|location-GPE                |
|Apple        |organization-company        |
|company's    |location-GPE                |
|TechCrunch   |organization-media/newspaper|
|Taylor Swift |person-artist/author        |
|iPhone 15    |product-other               |
+-------------+----------------------------+
""")

# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""
    <table class="benchmark-table">
        <tr>
            <th>Attribute</th>
            <th>Description</th>
        </tr>
        <tr>
            <td><strong>Model Name</strong></td>
            <td>nerdl_fewnerd_subentity_100d</td>
        </tr>
        <tr>
            <td><strong>Type</strong></td>
            <td>ner</td>
        </tr>
        <tr>
            <td><strong>Compatibility</strong></td>
            <td>Spark NLP 3.1.1+</td>
        </tr>
        <tr>
            <td><strong>License</strong></td>
            <td>Open Source</td>
        </tr>
        <tr>
            <td><strong>Edition</strong></td>
            <td>Official</td>
        </tr>
        <tr>
            <td><strong>Input Labels</strong></td>
            <td>[sentence, token, embeddings]</td>
        </tr>
        <tr>
            <td><strong>Output Labels</strong></td>
            <td>[ner]</td>
        </tr>
        <tr>
            <td><strong>Language</strong></td>
            <td>en</td>
        </tr>
    </table>
""", unsafe_allow_html=True)

# Data Source Information
st.markdown('<div class="sub-title">Data Source Information</div>', unsafe_allow_html=True)
st.markdown("""
    <table class="benchmark-table">
        <tr>
            <th>Attribute</th>
            <th>Description</th>
        </tr>
        <tr>
            <td><strong>Dataset</strong></td>
            <td>Few-NERD: A Few-shot Named Entity Recognition Dataset</td>
        </tr>
        <tr>
            <td><strong>Authors</strong></td>
            <td>Ding, Ning; Xu, Guangwei; Chen, Yulin; Wang, Xiaobin; Han, Xu; Xie, Pengjun; Zheng, Hai-Tao; Liu, Zhiyuan</td>
        </tr>
        <tr>
            <td><strong>Conference</strong></td>
            <td>ACL-IJCNL 2021</td>
        </tr>
    </table>
""", unsafe_allow_html=True)

# Benchmarking Results Description
st.markdown('<div class="sub-title">Benchmarking Results</div>', unsafe_allow_html=True)

st.markdown("""
<div class="section">
    <table class="benchmark-table">
        <thead>
            <tr>
                <th>Metric</th>
                <th>Score</th>
            </tr>
        </thead>
        <tbody>
            <tr>
                <td>Precision</td>
                <td>89.45%</td>
            </tr>
            <tr>
                <td>Recall</td>
                <td>91.67%</td>
            </tr>
            <tr>
                <td>F1-Score</td>
                <td>90.55%</td>
            </tr>
        </tbody>
    </table>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="section">
    <p>The benchmarking results highlight the performance of the <strong>nerdl_fewnerd_subentity_100d</strong> model. The metrics used are:</p>
    <ul>
        <li><strong>Precision:</strong> The percentage of correctly identified entities out of all entities identified by the model.</li>
        <li><strong>Recall:</strong> The percentage of correctly identified entities out of all entities that should have been identified.</li>
        <li><strong>F1-Score:</strong> The harmonic mean of precision and recall, providing a balanced measure of the model's performance.</li>
    </ul>
    <p>The scores indicate that the model achieves high accuracy and reliability in detecting entities within general scope texts.</p>
</div>
""", unsafe_allow_html=True)

# Conclusion
st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
    <p>The <strong>nerdl_fewnerd_subentity_100d</strong> model is a powerful tool for entity recognition in general texts, offering high accuracy across a diverse set of entities. Its robust performance, as demonstrated by the benchmark results, makes it suitable for various applications such as text analysis, content classification, and knowledge graph construction. By utilizing this model, users can effectively extract and categorize entities, enhancing their ability to analyze and understand textual data.</p>
    <p>For more information and to access the model, visit the <a href="https://nlp.johnsnowlabs.com/2023/01/30/nerdl_fewnerd_subentity_100d_en.html" class="link">John Snow Labs Model Page</a> or the <a href="https://github.com/JohnSnowLabs/spark-nlp" class="link">Spark NLP GitHub Repository</a>.</p>
</div>
""", unsafe_allow_html=True)

# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
    <ul>
        <li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li>
        <li>Model Used: <a class="link" href="https://sparknlp.org/2021/07/22/nerdl_fewnerd_subentity_100d_en.html" rel="noopener">nerdl_fewnerd_subentity_100d_en</a></li>
        <li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>
        <li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>
    </ul>
</div>
""", unsafe_allow_html=True)

# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
    <ul>
        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
        <li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
        <li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
        <li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
    </ul>
</div>
""", unsafe_allow_html=True)