File size: 12,641 Bytes
adb4d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import streamlit as st

# Custom CSS for better styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .sub-title {

            font-size: 24px;

            color: #4A90E2;

            margin-top: 20px;

        }

        .section {

            background-color: #f9f9f9;

            padding: 15px;

            border-radius: 10px;

            margin-top: 20px;

        }

        .section h2 {

            font-size: 22px;

            color: #4A90E2;

        }

        .section p, .section ul {

            color: #666666;

        }

        .link {

            color: #4A90E2;

            text-decoration: none;

        }

        .benchmark-table {

            width: 100%;

            border-collapse: collapse;

            margin-top: 20px;

        }

        .benchmark-table th, .benchmark-table td {

            border: 1px solid #ddd;

            padding: 8px;

            text-align: left;

        }

        .benchmark-table th {

            background-color: #4A90E2;

            color: white;

        }

        .benchmark-table td {

            background-color: #f2f2f2;

        }

    </style>

""", unsafe_allow_html=True)

# Main Title
st.markdown('<div class="main-title">Detect Entities in Twitter Texts</div>', unsafe_allow_html=True)

# Description
st.markdown("""

<div class="section">

    <p><strong>Detect Entities in Twitter Texts</strong> is a specialized NLP task focusing on identifying entities within Twitter-based texts. This app utilizes the <strong>bert_token_classifier_ner_btc</strong> model, which is trained on the Broad Twitter Corpus (BTC) dataset to detect entities with high accuracy. The model is based on BERT base-cased embeddings, which are integrated into the model, eliminating the need for separate embeddings in the NLP pipeline.</p>

</div>

""", unsafe_allow_html=True)

# What is Entity Recognition
st.markdown('<div class="sub-title">What is Entity Recognition?</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p><strong>Entity Recognition</strong> is a task in Natural Language Processing (NLP) that involves identifying and classifying named entities in text into predefined categories. For Twitter texts, this model focuses on detecting entities such as people, locations, and organizations, which are crucial for understanding and analyzing social media content.</p>

</div>

""", unsafe_allow_html=True)

# Model Importance and Applications
st.markdown('<div class="sub-title">Model Importance and Applications</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The <strong>bert_token_classifier_ner_btc</strong> model is highly effective for extracting named entities from Twitter texts. Its applications include:</p>

    <ul>

        <li><strong>Social Media Monitoring:</strong> The model can be used to identify and track mentions of people, organizations, and locations in social media posts, which is valuable for sentiment analysis and brand monitoring.</li>

        <li><strong>Event Detection:</strong> By recognizing key entities, the model helps in detecting and summarizing events discussed on Twitter, such as breaking news or trending topics.</li>

        <li><strong>Market Research:</strong> Companies can use the model to analyze customer opinions and identify trends related to their products or services based on entity mentions.</li>

        <li><strong>Content Classification:</strong> The model aids in categorizing Twitter content based on the detected entities, which can be useful for organizing and filtering large volumes of social media data.</li>

    </ul>

    <p>Why use the <strong>bert_token_classifier_ner_btc</strong> model?</p>

    <ul>

        <li><strong>Pre-trained on BTC Dataset:</strong> The model is specifically trained on Twitter data, making it well-suited for handling social media text.</li>

        <li><strong>Integrated BERT Embeddings:</strong> It uses BERT base-cased embeddings, providing strong performance without needing additional embedding components.</li>

        <li><strong>High Accuracy:</strong> The model achieves impressive precision and recall, ensuring reliable entity detection.</li>

        <li><strong>Ease of Use:</strong> Simplifies the process of entity recognition with minimal setup required.</li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Predicted Entities
st.markdown('<div class="sub-title">Predicted Entities</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><strong>PER:</strong> Person's name.</li>

        <li><strong>LOC:</strong> Location or place.</li>

        <li><strong>ORG:</strong> Organization or company name.</li>

    </ul>

</div>

""", unsafe_allow_html=True)

# How to Use the Model
st.markdown('<div class="sub-title">How to Use the Model</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>To use this model in Python, follow these steps:</p>

</div>

""", unsafe_allow_html=True)
st.code('''

from sparknlp.base import *

from sparknlp.annotator import *

from pyspark.ml import Pipeline

from pyspark.sql.functions import col, expr

import pandas as pd



# Define the components of the pipeline

document_assembler = DocumentAssembler() \\

    .setInputCol("text") \\

    .setOutputCol("document")



tokenizer = Tokenizer() \\

    .setInputCols(["document"]) \\

    .setOutputCol("token")



tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner_btc", "en") \\

    .setInputCols("token", "document") \\

    .setOutputCol("ner") \\

    .setCaseSensitive(True)



ner_converter = NerConverter() \\

    .setInputCols(["document", "token", "ner"]) \\

    .setOutputCol("ner_chunk")



# Create the pipeline

pipeline = Pipeline(stages=[

    document_assembler,

    tokenizer,

    tokenClassifier,

    ner_converter

])



# Create some example data

test_sentences = ["Pentagram's Dominic Lippa is working on a new identity for University of Arts London."]

data = spark.createDataFrame(pd.DataFrame({'text': test_sentences}))



# Apply the pipeline to the data

model = pipeline.fit(spark.createDataFrame(pd.DataFrame({'text': ['']})))

result = model.transform(data)



# Display results

result.select(

    expr("explode(ner_chunk) as ner_chunk")

).select(

    col("ner_chunk.result").alias("chunk"),

    col("ner_chunk.metadata.entity").alias("ner_label")

).show(truncate=False)

''', language='python')

# Results
st.text("""

+-------------------------+---------+

|chunk                    |ner_label|

+-------------------------+---------+

|Pentagram's              |ORG      |

|Dominic Lippa            |PER      |

|University of Arts London|ORG      |

+-------------------------+---------+

""")

# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <table class="benchmark-table">

        <tr>

            <th>Model Name</th>

            <td>bert_token_classifier_ner_btc</td>

        </tr>

        <tr>

            <th>Compatibility</th>

            <td>Spark NLP 3.2.2+</td>

        </tr>

        <tr>

            <th>License</th>

            <td>Open Source</td>

        </tr>

        <tr>

            <th>Edition</th>

            <td>Official</td>

        </tr>

        <tr>

            <th>Input Labels</th>

            <td>[sentence, token]</td>

        </tr>

        <tr>

            <th>Output Labels</th>

            <td>[ner]</td>

        </tr>

        <tr>

            <th>Language</th>

            <td>en</td>

        </tr>

        <tr>

            <th>Case Sensitive</th>

            <td>true</td>

        </tr>

        <tr>

            <th>Max Sentence Length</th>

            <td>128</td>

        </tr>

    </table>

</div>

""", unsafe_allow_html=True)

# Data Source
st.markdown('<div class="sub-title">Data Source</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>For more information about the dataset used to train this model, visit the <a class="link" href="https://github.com/juand-r/entity-recognition-datasets/tree/master/data/BTC" target="_blank">Broad Twitter Corpus (BTC)</a>.</p>

</div>

""", unsafe_allow_html=True)

# Benchmark
st.markdown('<div class="sub-title">Benchmarking</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The <strong>bert_token_classifier_ner_btc</strong> model has been evaluated on various benchmarks, including the following metrics:</p>

    <table class="benchmark-table">

        <tr>

            <th>Label</th>

            <th>Precision</th>

            <th>Recall</th>

            <th>F1 Score</th>

            <th>Support</th>

        </tr>

        <tr>

            <td>PER</td>

            <td>0.93</td>

            <td>0.92</td>

            <td>0.92</td>

            <td>1200</td>

        </tr>

        <tr>

            <td>LOC</td>

            <td>0.90</td>

            <td>0.89</td>

            <td>0.89</td>

            <td>800</td>

        </tr>

        <tr>

            <td>ORG</td>

            <td>0.94</td>

            <td>0.93</td>

            <td>0.93</td>

            <td>1000</td>

        </tr>

        <tr>

            <td>Average</td>

            <td>0.92</td>

            <td>0.91</td>

            <td>0.91</td>

            <td>3000</td>

        </tr>

    </table>

</div>

""", unsafe_allow_html=True)

# Conclusion
st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The <strong>bert_token_classifier_ner_btc</strong> model offers a powerful and effective solution for detecting entities in Twitter texts. Its training on the Broad Twitter Corpus (BTC) ensures that it is well-adapted to handle the unique characteristics of social media language.</p>

    <p>With high accuracy in identifying people, locations, and organizations, this model is invaluable for applications ranging from social media monitoring to market research and event detection. Its integration of BERT base-cased embeddings allows for robust entity recognition with minimal setup required.</p>

    <p>For anyone looking to enhance their social media analysis capabilities or improve their NLP workflows, leveraging this model can significantly streamline the process of extracting and classifying named entities from Twitter content.</p>

</div>

""", unsafe_allow_html=True)

# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/api/com/johnsnowlabs/nlp/annotators/classifier/dl/BertForTokenClassification.html" target="_blank" rel="noopener">BertForTokenClassification</a> annotator documentation</li>

        <li>Model Used: <a class="link" href="https://sparknlp.org/2021/09/09/bert_token_classifier_ner_btc_en.html" rel="noopener">bert_token_classifier_ner_btc_en</a></li>

        <li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>

        <li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>

        <li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>

        <li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>

        <li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>

    </ul>

</div>

""", unsafe_allow_html=True)