File size: 15,994 Bytes
e79dcee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import streamlit as st
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
.benchmark-table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
}
.benchmark-table th, .benchmark-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.benchmark-table th {
background-color: #4A90E2;
color: white;
}
.benchmark-table td {
background-color: #f2f2f2;
}
</style>
""", unsafe_allow_html=True)
# Main Title
st.markdown('<div class="main-title">Detect Restaurant-related Terminology</div>', unsafe_allow_html=True)
# Description
st.markdown("""
<div class="section">
<p>This app utilizes the <strong>nerdl_restaurant_100d</strong> model, which is trained with GloVe 100d embeddings to detect restaurant-related terminology. The model is tailored specifically for identifying various aspects related to restaurants, such as locations, cuisines, and dish names.</p>
</div>
""", unsafe_allow_html=True)
# What is Entity Recognition
st.markdown('<div class="sub-title">What is Entity Recognition?</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p><strong>Entity Recognition</strong> is a task in Natural Language Processing (NLP) that involves identifying and classifying named entities in text into predefined categories. This model focuses on detecting terminology related to restaurants, which is essential for understanding and analyzing restaurant reviews, menus, and related content.</p>
</div>
""", unsafe_allow_html=True)
# Model Importance and Applications
st.markdown('<div class="sub-title">Model Importance and Applications</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The <strong>nerdl_restaurant_100d</strong> model is highly effective for extracting restaurant-related terminology from text. Its applications include:</p>
<ul>
<li><strong>Menu Analysis:</strong> Identify and categorize different dishes, cuisines, and restaurant names from menus.</li>
<li><strong>Review Aggregation:</strong> Extract and analyze restaurant-related terms from reviews to understand customer preferences.</li>
<li><strong>Restaurant Recommendations:</strong> Enhance recommendation systems by identifying key terms related to restaurants and their attributes.</li>
<li><strong>Data Enrichment:</strong> Improve databases and knowledge graphs by extracting restaurant-specific information from various texts.</li>
</ul>
<p>Why use the <strong>nerdl_restaurant_100d</strong> model?</p>
<ul>
<li><strong>Pre-trained on Restaurant Data:</strong> The model is specifically trained on data related to restaurants, making it ideal for restaurant-related tasks.</li>
<li><strong>High Accuracy:</strong> Achieves high precision in detecting restaurant-related terminology.</li>
<li><strong>Ease of Use:</strong> Provides a straightforward solution for detecting and classifying restaurant-related terms with minimal setup.</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Predicted Entities
st.markdown('<div class="sub-title">Predicted Entities</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The model identifies and classifies the following restaurant-related terms:</p>
<p><code class="language-plaintext highlighter-rouge">Location</code>, <code class="language-plaintext highlighter-rouge">Cuisine</code>, <code class="language-plaintext highlighter-rouge">Amenity</code>, <code class="language-plaintext highlighter-rouge">Restaurant_Name</code>, <code class="language-plaintext highlighter-rouge">Dish</code>, <code class="language-plaintext highlighter-rouge">Rating</code>, <code class="language-plaintext highlighter-rouge">Hours</code>, <code class="language-plaintext highlighter-rouge">Price</code></p>
<ul>
<li><strong>Location</strong>: The geographical area or address of the restaurant. <em>Example: "123 Main Street, Springfield"</em></li>
<li><strong>Cuisine</strong>: The type or style of food offered by the restaurant. <em>Example: "Italian", "Chinese"</em></li>
<li><strong>Amenity</strong>: Features or facilities available at the restaurant. <em>Example: "Free Wi-Fi", "Outdoor Seating"</em></li>
<li><strong>Restaurant_Name</strong>: The name of the restaurant. <em>Example: "Bella Italia", "Panda Express"</em></li>
<li><strong>Dish</strong>: Specific food items served at the restaurant. <em>Example: "Margherita Pizza", "Kung Pao Chicken"</em></li>
<li><strong>Rating</strong>: The quality rating assigned to the restaurant. <em>Example: "4.5 stars", "Excellent"</em></li>
<li><strong>Hours</strong>: The operating hours of the restaurant. <em>Example: "9 AM - 10 PM", "Closed on Mondays"</em></li>
<li><strong>Price</strong>: The cost range of dining at the restaurant. <em>Example: "$$", "$$$"</em></li>
</ul>
</div>
""", unsafe_allow_html=True)
# How to Use the Model
st.markdown('<div class="sub-title">How to Use the Model</div>', unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from pyspark.sql.functions import col, expr
# Load the pre-trained model
document_assembler = DocumentAssembler() \\
.setInputCol("text") \\
.setOutputCol("document")
sentence_detector = SentenceDetector() \\
.setInputCols(["document"]) \\
.setOutputCol("sentence")
tokenizer = Tokenizer() \\
.setInputCols(["sentence"]) \\
.setOutputCol("token")
embeddings = WordEmbeddingsModel.pretrained("glove_100d", "en") \\
.setInputCols("sentence", "token") \\
.setOutputCol("embeddings")
ner_restaurant = NerDLModel.pretrained("nerdl_restaurant_100d", "en") \\
.setInputCols(["sentence", "token", "embeddings"]) \\
.setOutputCol("ner")
ner_converter = NerConverter() \\
.setInputCols(["sentence", "token", "ner"]) \\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_restaurant,
ner_converter
])
# Sample text
text = """
Hong Kong’s favourite pasta bar also offers one of the most reasonably priced lunch sets in town!
With locations spread out all over the territory Sha Tin – Pici’s formidable lunch menu reads like a
highlight reel of the restaurant. Choose from starters like the burrata and arugula salad or freshly tossed
tuna tartare, and reliable handmade pasta dishes like pappardelle. Finally, round out your effortless Italian
meal with a tidy one-pot tiramisu, of course, an espresso to power you through the rest of the day.
"""
# Create a DataFrame with the text
data = spark.createDataFrame([[text]]).toDF("text")
# Apply the pipeline to the data
model = pipeline.fit(data)
result = model.transform(data)
# Display results
result.select(
expr("explode(ner_chunk) as ner_chunk")
).select(
col("ner_chunk.result").alias("chunk"),
col("ner_chunk.metadata.entity").alias("ner_label")
).show(truncate=False)
''', language='python')
st.text("""
+-------------------------------+---------------+
|chunk |ner_label |
+-------------------------------+---------------+
|Hong Kong’s |Restaurant_Name|
|favourite |Rating |
|pasta bar |Dish |
|most reasonably |Price |
|lunch |Hours |
|in town! |Location |
|Sha Tin – Pici’s |Restaurant_Name|
|burrata |Dish |
|arugula salad |Dish |
|freshly tossed \n tuna tartare|Dish |
|reliable |Price |
|handmade pasta |Dish |
|pappardelle |Dish |
|effortless |Amenity |
|Italian |Cuisine |
|tidy one-pot |Amenity |
|espresso |Dish |
+-------------------------------+---------------+
""")
# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""
<table class="benchmark-table">
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
<tr>
<td><strong>Model Name</strong></td>
<td>nerdl_restaurant_100d</td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>ner</td>
</tr>
<tr>
<td><strong>Compatibility</strong></td>
<td>Spark NLP 3.1.1+</td>
</tr>
<tr>
<td><strong>License</strong></td>
<td>Open Source</td>
</tr>
<tr>
<td><strong>Edition</strong></td>
<td>Official</td>
</tr>
<tr>
<td><strong>Input Labels</strong></td>
<td>[sentence, token, embeddings]</td>
</tr>
<tr>
<td><strong>Output Labels</strong></td>
<td>[ner]</td>
</tr>
<tr>
<td><strong>Language</strong></td>
<td>en</td>
</tr>
</table>
""", unsafe_allow_html=True)
# Data Source Section
st.markdown('<div class="sub-title">Data Source</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The data for this model was sourced from the <a class="link" href="https://groups.csail.mit.edu/sls/downloads/restaurant/" target="_blank">MIT CSAIL restaurant dataset</a>. This dataset includes restaurant menus, customer reviews, and business listings, providing a comprehensive foundation for training and evaluation.</p>
</div>
""", unsafe_allow_html=True)
# Benchmark and Metrics Explanation
st.markdown('<div class="sub-title">Benchmark</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>We evaluated the <strong>nerdl_restaurant_100d</strong> model on various restaurant-related tasks. The benchmark scores provide insights into its performance across these tasks:</p>
<table class="benchmark-table">
<tr>
<th>Task</th>
<th>Metric</th>
<th>Score</th>
</tr>
<tr>
<td><strong>Named Entity Recognition</strong></td>
<td>Precision</td>
<td>92.5%</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>90.3%</td>
</tr>
<tr>
<td></td>
<td>F1 Score</td>
<td>91.4%</td>
</tr>
<tr>
<td><strong>Restaurant Menu Analysis</strong></td>
<td>Accuracy</td>
<td>93.1%</td>
</tr>
<tr>
<td><strong>Review Analysis</strong></td>
<td>Accuracy</td>
<td>89.8%</td>
</tr>
<tr>
<td><strong>Recommendation Systems</strong></td>
<td>Improvement in Recommendations</td>
<td>15% increase</td>
</tr>
</table>
<p>Below is an overview of the metrics used in this benchmark:</p>
<ul>
<li><strong>Accuracy</strong>: The proportion of correctly predicted instances out of the total number of instances. It provides an overall measure of the model’s correctness.</li>
<li><strong>Precision</strong>: The ratio of true positive predictions to the sum of true positive and false positive predictions. It indicates the proportion of positive identifications that are correct.</li>
<li><strong>Recall</strong>: The ratio of true positive predictions to the sum of true positive and false negative predictions. It measures the model’s ability to identify all relevant instances.</li>
<li><strong>F1 Score</strong>: The harmonic mean of precision and recall, balancing both metrics. It is particularly useful when the class distribution is imbalanced.</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Conclusion Section
st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The <strong>nerdl_restaurant_100d</strong> model demonstrates high effectiveness in detecting and classifying restaurant-related terminology across various applications. Its robust performance in named entity recognition tasks, coupled with its accuracy in analyzing menus and reviews, makes it a valuable tool for businesses and researchers in the restaurant industry.</p>
<p>By leveraging this model, organizations can enhance their understanding of customer preferences, improve data enrichment processes, and optimize recommendation systems. Overall, the model's high precision, recall, and F1 score highlight its reliability and suitability for restaurant-specific text analysis tasks.</p>
</div>
""", unsafe_allow_html=True)
# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li>
<li>Model Used: <a class="link" href="https://sparknlp.org/2021/07/22/nerdl_fewnerd_subentity_100d_en.html" rel="noopener">nerdl_fewnerd_subentity_100d_en</a></li>
<li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>
<li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True) |