Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
# Custom CSS for better styling | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 36px; | |
color: #4A90E2; | |
font-weight: bold; | |
text-align: center; | |
} | |
.sub-title { | |
font-size: 24px; | |
color: #4A90E2; | |
margin-top: 20px; | |
} | |
.section { | |
background-color: #f9f9f9; | |
padding: 15px; | |
border-radius: 10px; | |
margin-top: 20px; | |
} | |
.section h2 { | |
font-size: 22px; | |
color: #4A90E2; | |
} | |
.section p, .section ul { | |
color: #666666; | |
} | |
.link { | |
color: #4A90E2; | |
text-decoration: none; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Main Title | |
st.markdown('<div class="main-title">Detect 10 Different Entities in Hebrew (hebrew_cc_300d embeddings)</div>', unsafe_allow_html=True) | |
# Introduction | |
st.markdown(""" | |
<div class="section"> | |
<p>Named Entity Recognition (NER) models identify and categorize important entities in a text. This page details a word embeddings-based NER model for Hebrew texts, using the <code>hebrew_cc_300d</code> word embeddings. The model is pretrained and available for use with Spark NLP.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Model Description | |
st.markdown('<div class="sub-title">Description</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>This model uses Hebrew word embeddings to find 10 different types of entities in Hebrew text. It is trained using <code>hebrew_cc_300d</code> word embeddings, so please use the same embeddings in the pipeline. It can identify the following types of entities:</p> | |
<ul> | |
<li>PERS (Persons)</li> | |
<li>DATE (Dates)</li> | |
<li>ORG (Organizations)</li> | |
<li>LOC (Locations)</li> | |
<li>PERCENT (Percentage)</li> | |
<li>MONEY (Money)</li> | |
<li>TIME (Time)</li> | |
<li>MISC_AFF (Miscellaneous Affiliation)</li> | |
<li>MISC_EVENT (Miscellaneous Event)</li> | |
<li>MISC_ENT (Miscellaneous Entity)</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Setup Instructions | |
st.markdown('<div class="sub-title">Setup</div>', unsafe_allow_html=True) | |
st.markdown('<p>To use the model, you need Spark NLP installed. You can install it using pip:</p>', unsafe_allow_html=True) | |
st.code(""" | |
pip install spark-nlp | |
pip install pyspark | |
""", language="bash") | |
st.markdown("<p>Then, import Spark NLP and start a Spark session:</p>", unsafe_allow_html=True) | |
st.code(""" | |
import sparknlp | |
# Start Spark Session | |
spark = sparknlp.start() | |
""", language='python') | |
# Example Usage | |
st.markdown('<div class="sub-title">Example Usage with Hebrew NER Model</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>Below is an example of how to set up and use the <code>hebrewner_cc_300d</code> model for named entity recognition in Hebrew:</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.code(''' | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
from pyspark.sql.functions import col, expr, round, concat, lit, explode | |
# Define the components of the pipeline | |
documentAssembler = DocumentAssembler() \\ | |
.setInputCol("text") \\ | |
.setOutputCol("document") | |
sentence_detector = SentenceDetector() \\ | |
.setInputCols(["document"]) \\ | |
.setOutputCol("sentence") | |
tokenizer = Tokenizer() \\ | |
.setInputCols(["sentence"]) \\ | |
.setOutputCol("token") | |
word_embeddings = WordEmbeddingsModel.pretrained("hebrew_cc_300d", "he") \\ | |
.setInputCols(["sentence", "token"]) \\ | |
.setOutputCol("embeddings") | |
ner = NerDLModel.pretrained("hebrewner_cc_300d", "he") \\ | |
.setInputCols(["sentence", "token", "embeddings"]) \\ | |
.setOutputCol("ner") | |
ner_converter = NerConverter().setInputCols(["sentence", "token", "ner"]).setOutputCol("ner_chunk") | |
# Create the pipeline | |
pipeline = Pipeline(stages=[documentAssembler, sentence_detector, tokenizer, word_embeddings, ner, ner_converter]) | |
# Create sample data | |
example = """ | |
ื- 25 ืืืืืืกื ืขืฆืจ ืืฉื"ื ืืช ืืืืื ืืื-ื'ืืืื , ืืืจื ืืจืื ื , ืฉืืืืก ืืืจืืื ืืคืช"ื ืืืืคืขื ืขื ืืื ืืืืืืืื. ืืื-ื'ืืืื ืืชืืืื ืืืงืื ืืืืืืช ืืจืืจ ืืืื ืืืงืจื ืขืจืืื ืืฉืจืื , ืืืฆืข ืคืืืืข ืืจืืืช ืืฉืจืื ืื ืืจืื , ืืคืืืข ืืืืจืืช ืืฉืจืืืืืช ืืืจืื ืืืืืืฃ ืืืืืื ืืื ืืฉืืจืจ ืืกืืจืื ืืืืืื ืืื. | |
""" | |
data = spark.createDataFrame([[example]]).toDF("text") | |
# Fit and transform data with the pipeline | |
result = pipeline.fit(data).transform(data) | |
# Select the result, entity | |
result.select( | |
expr("explode(ner_chunk) as ner_chunk") | |
).select( | |
col("ner_chunk.result").alias("chunk"), | |
col("ner_chunk.metadata").getItem("entity").alias("ner_label") | |
).show(truncate=False) | |
''', language="python") | |
import pandas as pd | |
# Create the data for the DataFrame | |
data = { | |
"chunk": [ | |
"25 ืืืืืืกื", | |
"ืืฉื\"ื", | |
"ืืืืื ืืื-ื'ืืืื", | |
"ืืจืื ื", | |
"ืืคืช\"ื", | |
"ืืืืืืืื", | |
"ืืื-ื'ืืืื", | |
"ืืืื", | |
"ืขืจืืื", | |
"ืืฉืจืื", | |
"ืืจืืืช ืืฉืจืื", | |
"ืื ืืจืื", | |
"ืืฉืจืืืืืช", | |
"ืืืจืื" | |
], | |
"ner_label": [ | |
"DATE", | |
"ORG", | |
"PERS", | |
"MISC_AFF", | |
"ORG", | |
"ORG", | |
"PERS", | |
"LOC", | |
"MISC_AFF", | |
"LOC", | |
"ORG", | |
"LOC", | |
"MISC_AFF", | |
"LOC" | |
] | |
} | |
# Creating the DataFrame | |
df = pd.DataFrame(data) | |
df.index += 1 | |
st.dataframe(df) | |
# Model Information | |
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>The <code>hebrewner_cc_300d</code> model details are as follows:</p> | |
<ul> | |
<li><strong>Model Name:</strong> hebrewner_cc_300d</li> | |
<li><strong>Type:</strong> ner</li> | |
<li><strong>Compatibility:</strong> Spark NLP 4.0.2+</li> | |
<li><strong>License:</strong> Open Source</li> | |
<li><strong>Edition:</strong> Official</li> | |
<li><strong>Input Labels:</strong> [document, token, word_embeddings]</li> | |
<li><strong>Output Labels:</strong> [ner]</li> | |
<li><strong>Language:</strong> he</li> | |
<li><strong>Size:</strong> 14.8 MB</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Benchmark Section | |
st.markdown('<div class="sub-title">Benchmark</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>Evaluating the performance of NER models is crucial to understanding their effectiveness in real-world applications. Below are the benchmark results for the <code>hebrewner_cc_300d</code> model, focusing on various named entity categories. The metrics used include precision, recall, and F1-score, which are standard for evaluating classification models.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown(""" | |
--- | |
| Label | TP | FP | FN | Precision | Recall | F1-Score | | |
|--------------|-----|-----|-----|-----------|---------|----------| | |
| I-TIME | 5 | 2 | 0 | 0.714286 | 1.000000| 0.833333 | | |
| I-MISC_AFF | 2 | 0 | 3 | 1.000000 | 0.400000| 0.571429 | | |
| B-MISC_EVENT | 7 | 0 | 1 | 1.000000 | 0.875000| 0.933333 | | |
| B-LOC | 180 | 24 | 37 | 0.882353 | 0.829493| 0.855107 | | |
| I-ORG | 124 | 47 | 38 | 0.725146 | 0.765432| 0.744745 | | |
| B-DATE | 50 | 4 | 7 | 0.925926 | 0.877193| 0.900901 | | |
| I-PERS | 157 | 10 | 15 | 0.940120 | 0.912791| 0.926254 | | |
| I-DATE | 39 | 7 | 8 | 0.847826 | 0.829787| 0.838710 | | |
| B-MISC_AFF | 132 | 11 | 9 | 0.923077 | 0.936170| 0.929577 | | |
| I-MISC_EVENT | 6 | 0 | 2 | 1.000000 | 0.750000| 0.857143 | | |
| B-TIME | 4 | 0 | 1 | 1.000000 | 0.800000| 0.888889 | | |
| I-PERCENT | 8 | 0 | 0 | 1.000000 | 1.000000| 1.000000 | | |
| I-MISC_ENT | 11 | 3 | 10 | 0.785714 | 0.523810| 0.628571 | | |
| B-MISC_ENT | 8 | 1 | 5 | 0.888889 | 0.615385| 0.727273 | | |
| I-LOC | 79 | 18 | 23 | 0.814433 | 0.774510| 0.793970 | | |
| B-PERS | 231 | 22 | 26 | 0.913044 | 0.898833| 0.905882 | | |
| B-MONEY | 36 | 2 | 2 | 0.947368 | 0.947368| 0.947368 | | |
| B-PERCENT | 28 | 3 | 0 | 0.903226 | 1.000000| 0.949152 | | |
| B-ORG | 166 | 41 | 37 | 0.801932 | 0.817734| 0.809756 | | |
| I-MONEY | 61 | 1 | 1 | 0.983871 | 0.983871| 0.983871 | | |
| Macro-average| 1334| 196 | 225 | 0.899861 | 0.826869| 0.861822 | | |
| Micro-average| 1334| 196 | 225 | 0.871895 | 0.855677| 0.863710 | | |
""", unsafe_allow_html=True) | |
# Summary | |
st.markdown('<div class="sub-title">Summary</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>This page provided an overview of the <code>hebrewner_cc_300d</code> model for Hebrew NER. We discussed how to set up and use the model with Spark NLP, including example code and results. We also provided details on the model's specifications and links to relevant resources for further exploration.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# References | |
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<ul> | |
<li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li> | |
<li>Model Used: <a class="link" href="https://sparknlp.org/2022/08/09/hebrewner_cc_300d_he_3_0.html" rel="noopener">hebrewner_cc_300d_he_3_0</a></li> | |
<li><a class="link" href="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/" target="_blank" rel="noopener">Data Source</a></li> | |
<li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li> | |
<li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Community & Support | |
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<ul> | |
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li> | |
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub Repository</a>: Report issues or contribute</li> | |
<li><a class="link" href="https://forum.johnsnowlabs.com/" target="_blank">Community Forum</a>: Ask questions, share ideas, and get support</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |