abdullahmubeen10 commited on
Commit
4c983c8
·
verified ·
1 Parent(s): f6f2c36

Upload 5 files

Browse files
.streamlit/config.toml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [theme]
2
+ base="light"
3
+ primaryColor="#29B4E8"
Demo.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import sparknlp
3
+ import os
4
+ import pandas as pd
5
+
6
+ from sparknlp.base import *
7
+ from sparknlp.annotator import *
8
+ from pyspark.ml import Pipeline
9
+ from sparknlp.pretrained import PretrainedPipeline
10
+ from annotated_text import annotated_text
11
+
12
+ # Page configuration
13
+ st.set_page_config(
14
+ layout="wide",
15
+ initial_sidebar_state="auto"
16
+ )
17
+
18
+ # CSS for styling
19
+ st.markdown("""
20
+ <style>
21
+ .main-title {
22
+ font-size: 36px;
23
+ color: #4A90E2;
24
+ font-weight: bold;
25
+ text-align: center;
26
+ }
27
+ .section {
28
+ background-color: #f9f9f9;
29
+ padding: 10px;
30
+ border-radius: 10px;
31
+ margin-top: 10px;
32
+ }
33
+ .section p, .section ul {
34
+ color: #666666;
35
+ }
36
+ </style>
37
+ """, unsafe_allow_html=True)
38
+
39
+ @st.cache_resource
40
+ def init_spark():
41
+ return sparknlp.start()
42
+
43
+ @st.cache_resource
44
+ def create_pipeline(model):
45
+ document_assembler = DocumentAssembler() \
46
+ .setInputCol("text") \
47
+ .setOutputCol("document")
48
+
49
+ sentence_detector = SentenceDetector() \
50
+ .setInputCols(["document"]) \
51
+ .setOutputCol("sentence")
52
+
53
+ word_segmenter = WordSegmenterModel.pretrained("wordseg_kaist_ud", "ko") \
54
+ .setInputCols(["sentence"]) \
55
+ .setOutputCol("token")
56
+
57
+ embeddings = WordEmbeddingsModel.pretrained("glove_840B_300", "xx") \
58
+ .setInputCols(["document", "token"]) \
59
+ .setOutputCol("embeddings")
60
+
61
+ ner = NerDLModel.pretrained("ner_kmou_glove_840B_300d", "ko") \
62
+ .setInputCols(["document", "token", "embeddings"]) \
63
+ .setOutputCol("ner")
64
+
65
+ ner_converter = NerConverter().setInputCols(["document", "token", "ner"]).setOutputCol("ner_chunk")
66
+
67
+ pipeline = Pipeline(stages=[document_assembler, sentence_detector, word_segmenter, embeddings, ner, ner_converter])
68
+ return nlpPipeline
69
+
70
+ def fit_data(pipeline, data):
71
+ empty_df = spark.createDataFrame([['']]).toDF('text')
72
+ pipeline_model = pipeline.fit(empty_df)
73
+ model = LightPipeline(pipeline_model)
74
+ result = model.fullAnnotate(data)
75
+ return result
76
+
77
+ def annotate(data):
78
+ document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"]
79
+ annotated_words = []
80
+ for chunk, label in zip(chunks, labels):
81
+ parts = document.split(chunk, 1)
82
+ if parts[0]:
83
+ annotated_words.append(parts[0])
84
+ annotated_words.append((chunk, label))
85
+ document = parts[1]
86
+ if document:
87
+ annotated_words.append(document)
88
+ annotated_text(*annotated_words)
89
+
90
+ # Set up the page layout
91
+ st.markdown('<div class="main-title">Recognize entities in Urdu text</div>', unsafe_allow_html=True)
92
+ st.markdown("""
93
+ <div class="section">
94
+ <p>This model uses the pre-trained <code>glove_840B_300</code> embeddings model from WordEmbeddings annotator as an input</p>
95
+ </div>
96
+ """, unsafe_allow_html=True)
97
+
98
+ # Sidebar content
99
+ model = st.sidebar.selectbox(
100
+ "Choose the pretrained model",
101
+ ["ner_kmou_glove_840B_300d"],
102
+ help="For more info about the models visit: https://sparknlp.org/models"
103
+ )
104
+
105
+ # Reference notebook link in sidebar
106
+ link = """
107
+ <a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/public/NER_KO.ipynb">
108
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
109
+ </a>
110
+ """
111
+ st.sidebar.markdown('Reference notebook:')
112
+ st.sidebar.markdown(link, unsafe_allow_html=True)
113
+
114
+ # Load examples
115
+ examples = [
116
+ """ARD , ZDF 등 공영 TV 와 바이에른주 방송 , 북부 독일 방송 등 은 이 날 한국 의 총선 소식 과 관련 , 여당 의 과반수 의석 확보 와 신당 의 득표 율 이 이번 선거 의 최대 관심사 이 라고 보도 하 ㄴ 데 잇 어 저녁 시간 부터 는 수 차례 에 걸치 어 개표 상황 과 정당 별 의석 전망 을 속보 로 전하 았 다 .""",
117
+ """두 나라 관계 는 중국 의 인권 문제 와 핵확산 방지 문제 , 통상 문제 및 최근 의 F 16 전투기 대 대만 판매 등 을 놓 고 이미 위험선 상 에 오 아 있 는데 클린턴 행정부 의 등장 으로 양국 관계 가 더욱 경색 되 ㄹ 것 을 걱정 하 는 분위기 .""",
118
+ """서울대 건축공학 과 를 졸업 하 ㄴ 이 씨 는 한국건축가협회""",
119
+ """나 는 다시 순자 를 양동 에서 빼내 기 위하 아서 창신 팔동""",
120
+ """헤라신전 서 채화 되 ㄴ 지 보름 , 지구 의 반바퀴 를 돌 아 제주공항 에 첫발 을 내디디 ㄴ 이래 로 열이틀""",
121
+ """다음 은 홍콩 의 권위지 명보 와 일본 도쿄 ( 동경 ) 신문 이 24일""",
122
+ """최 영사 가 우리 외교관 이 며 그 신변보호 책임 이 주재국 이 ㄴ 러시아 에 있 다는 점 에서 러시아 는 이 같 은 우리 정부 요구 에 응하 아야 하 ㄹ 의무 가 있 다 .""",
123
+ """판 에 박 은 듯 하 ㄴ 깨끗 하 ㄴ 글씨 로 , 처음 단군 님 이 니 신라 , 백제 , 고구려 이 니 띄엄띄엄 어른 들 한테 서 귀결 로 들어오 던 얘기 들 이 참말 로 씌 어 있 었 다 ."""
124
+ ]
125
+
126
+ selected_text = st.selectbox("Select an example", examples)
127
+ custom_input = st.text_input("Try it with your own Sentence!")
128
+
129
+ text_to_analyze = custom_input if custom_input else selected_text
130
+
131
+ st.subheader('Full example text')
132
+ HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>"""
133
+ st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)
134
+
135
+ # Initialize Spark and create pipeline
136
+ spark = init_spark()
137
+ pipeline = create_pipeline(model)
138
+ output = fit_data(pipeline, text_to_analyze)
139
+
140
+ # Display matched sentence
141
+ st.subheader("Processed output:")
142
+
143
+ results = {
144
+ 'Document': output[0]['document'][0].result,
145
+ 'NER Chunk': [n.result for n in output[0]['ner_chunk']],
146
+ "NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']]
147
+ }
148
+
149
+ annotate(results)
150
+
151
+ with st.expander("View DataFrame"):
152
+ df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']})
153
+ df.index += 1
154
+ st.dataframe(df)
155
+
156
+
157
+
158
+
Dockerfile ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Download base image ubuntu 18.04
2
+ FROM ubuntu:18.04
3
+
4
+ # Set environment variables
5
+ ENV NB_USER jovyan
6
+ ENV NB_UID 1000
7
+ ENV HOME /home/${NB_USER}
8
+
9
+ # Install required packages
10
+ RUN apt-get update && apt-get install -y \
11
+ tar \
12
+ wget \
13
+ bash \
14
+ rsync \
15
+ gcc \
16
+ libfreetype6-dev \
17
+ libhdf5-serial-dev \
18
+ libpng-dev \
19
+ libzmq3-dev \
20
+ python3 \
21
+ python3-dev \
22
+ python3-pip \
23
+ unzip \
24
+ pkg-config \
25
+ software-properties-common \
26
+ graphviz \
27
+ openjdk-8-jdk \
28
+ ant \
29
+ ca-certificates-java \
30
+ && apt-get clean \
31
+ && update-ca-certificates -f;
32
+
33
+ # Install Python 3.8 and pip
34
+ RUN add-apt-repository ppa:deadsnakes/ppa \
35
+ && apt-get update \
36
+ && apt-get install -y python3.8 python3-pip \
37
+ && apt-get clean;
38
+
39
+ # Set up JAVA_HOME
40
+ ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64/
41
+ RUN mkdir -p ${HOME} \
42
+ && echo "export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/" >> ${HOME}/.bashrc \
43
+ && chown -R ${NB_UID}:${NB_UID} ${HOME}
44
+
45
+ # Create a new user named "jovyan" with user ID 1000
46
+ RUN useradd -m -u ${NB_UID} ${NB_USER}
47
+
48
+ # Switch to the "jovyan" user
49
+ USER ${NB_USER}
50
+
51
+ # Set home and path variables for the user
52
+ ENV HOME=/home/${NB_USER} \
53
+ PATH=/home/${NB_USER}/.local/bin:$PATH
54
+
55
+ # Set the working directory to the user's home directory
56
+ WORKDIR ${HOME}
57
+
58
+ # Upgrade pip and install Python dependencies
59
+ RUN python3.8 -m pip install --upgrade pip
60
+ COPY requirements.txt /tmp/requirements.txt
61
+ RUN python3.8 -m pip install -r /tmp/requirements.txt
62
+
63
+ # Copy the application code into the container at /home/jovyan
64
+ COPY --chown=${NB_USER}:${NB_USER} . ${HOME}
65
+
66
+ # Expose port for Streamlit
67
+ EXPOSE 7860
68
+
69
+ # Define the entry point for the container
70
+ ENTRYPOINT ["streamlit", "run", "Demo.py", "--server.port=7860", "--server.address=0.0.0.0"]
pages/Workflow & Model Overview.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ # Custom CSS for better styling
4
+ st.markdown("""
5
+ <style>
6
+ .main-title {
7
+ font-size: 36px;
8
+ color: #4A90E2;
9
+ font-weight: bold;
10
+ text-align: center;
11
+ }
12
+ .sub-title {
13
+ font-size: 24px;
14
+ color: #4A90E2;
15
+ margin-top: 20px;
16
+ }
17
+ .section {
18
+ background-color: #f9f9f9;
19
+ padding: 15px;
20
+ border-radius: 10px;
21
+ margin-top: 20px;
22
+ }
23
+ .section h2 {
24
+ font-size: 22px;
25
+ color: #4A90E2;
26
+ }
27
+ .section p, .section ul {
28
+ color: #666666;
29
+ }
30
+ .link {
31
+ color: #4A90E2;
32
+ text-decoration: none;
33
+ }
34
+ </style>
35
+ """, unsafe_allow_html=True)
36
+
37
+ # Main Title
38
+ st.markdown('<div class="main-title">Named Entity Recognition for Korean (GloVe 840B 300d)</div>', unsafe_allow_html=True)
39
+
40
+ # Description
41
+ st.markdown('<div class="sub-title">Description</div>', unsafe_allow_html=True)
42
+ st.markdown("""
43
+ <div class="section">
44
+ <p>This model annotates named entities in a text, which can be used to find features such as names of people, places, and organizations in the BIO format. The model does not read words directly but instead reads word embeddings, which represent words as points such that more semantically similar words are closer together.</p>
45
+ <p>This model uses the pre-trained <code>glove_840B_300</code> embeddings model from WordEmbeddings annotator as an input, so be sure to use the same embeddings in the pipeline.</p>
46
+ </div>
47
+ """, unsafe_allow_html=True)
48
+
49
+ # Predicted Entities
50
+ st.markdown('<div class="sub-title">Predicted Entities</div>', unsafe_allow_html=True)
51
+ st.markdown("""
52
+ <div class="section">
53
+ <ul>
54
+ <li>Dates-DT</li>
55
+ <li>Locations-LC</li>
56
+ <li>Organizations-OG</li>
57
+ <li>Persons-PS</li>
58
+ <li>Time-TI</li>
59
+ </ul>
60
+ </div>
61
+ """, unsafe_allow_html=True)
62
+
63
+ # How to use
64
+ st.markdown('<div class="sub-title">How to use</div>', unsafe_allow_html=True)
65
+ st.markdown("""
66
+ <div class="section">
67
+ <p>To use this model, follow these steps in Python:</p>
68
+ </div>
69
+ """, unsafe_allow_html=True)
70
+ st.code("""
71
+ from sparknlp.base import *
72
+ from sparknlp.annotator import *
73
+ from pyspark.ml import Pipeline
74
+
75
+ # Define the components of the pipeline
76
+ document_assembler = DocumentAssembler() \\
77
+ .setInputCol("text") \\
78
+ .setOutputCol("document")
79
+
80
+ sentence_detector = SentenceDetector() \\
81
+ .setInputCols(["document"]) \\
82
+ .setOutputCol("sentence")
83
+
84
+ word_segmenter = WordSegmenterModel.pretrained("wordseg_kaist_ud", "ko") \\
85
+ .setInputCols(["sentence"]) \\
86
+ .setOutputCol("token")
87
+
88
+ embeddings = WordEmbeddingsModel.pretrained("glove_840B_300", "xx") \\
89
+ .setInputCols(["document", "token"]) \\
90
+ .setOutputCol("embeddings")
91
+
92
+ ner = NerDLModel.pretrained("ner_kmou_glove_840B_300d", "ko") \\
93
+ .setInputCols(["document", "token", "embeddings"]) \\
94
+ .setOutputCol("ner")
95
+
96
+ ner_converter = NerConverter().setInputCols(["document", "token", "ner"]).setOutputCol("ner_chunk")
97
+
98
+ # Create the pipeline
99
+ pipeline = Pipeline(stages=[document_assembler, sentence_detector, word_segmenter, embeddings, ner, ner_converter])
100
+
101
+ # Create sample data
102
+ example = spark.createDataFrame([['라이프니츠 의 주도 로 베를린 에 세우 어 지 ㄴ 베를린 과학아카데미']], ["text"])
103
+
104
+ # Fit and transform data with the pipeline
105
+ result = pipeline.fit(example).transform(example)
106
+
107
+ # Select the result, entity
108
+ result.select(
109
+ expr("explode(ner_chunk) as ner_chunk")
110
+ ).select(
111
+ col("ner_chunk.result").alias("chunk"),
112
+ col("ner_chunk.metadata").getItem("entity").alias("ner_label")
113
+ ).show(truncate=False)
114
+ """, language="python")
115
+
116
+ # Results
117
+ import pandas as pd
118
+
119
+ # Create the data for the DataFrame
120
+ data = {
121
+ "token": ["라이프니츠", "베를린", "과학아카데미"],
122
+ "ner": ["B-PS", "B-OG", "I-OG"]
123
+ }
124
+
125
+ # Creating the DataFrame
126
+ df = pd.DataFrame(data)
127
+ df.index += 1
128
+ st.dataframe(df)
129
+
130
+ # Model Information
131
+ st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
132
+ st.markdown("""
133
+ <div class="section">
134
+ <p>The <code>ner_kmou_glove_840B_300d</code> model details are as follows:</p>
135
+ <ul>
136
+ <li><strong>Model Name:</strong> ner_kmou_glove_840B_300d</li>
137
+ <li><strong>Type:</strong> ner</li>
138
+ <li><strong>Compatibility:</strong> Spark NLP 2.7.0+</li>
139
+ <li><strong>License:</strong> Open Source</li>
140
+ <li><strong>Edition:</strong> Official</li>
141
+ <li><strong>Input Labels:</strong> [sentence, token, embeddings]</li>
142
+ <li><strong>Output Labels:</strong> [ner]</li>
143
+ <li><strong>Language:</strong> ko</li>
144
+ </ul>
145
+ </div>
146
+ """, unsafe_allow_html=True)
147
+
148
+ # Data Source
149
+ st.markdown('<div class="sub-title">Data Source</div>', unsafe_allow_html=True)
150
+ st.markdown("""
151
+ <div class="section">
152
+ <p>The model was trained by the Korea Maritime and Ocean University NLP data set.</p>
153
+ </div>
154
+ """, unsafe_allow_html=True)
155
+
156
+ # Benchmarking
157
+ st.markdown('<div class="sub-title">Benchmarking</div>', unsafe_allow_html=True)
158
+ st.markdown("""
159
+ <div class="section">
160
+ <p>Evaluating the performance of NER models is crucial to understanding their effectiveness in real-world applications. Below are the benchmark results for the <code>ner_kmou_glove_840B_300d</code> model, focusing on various named entity categories. The metrics used include precision, recall, and F1-score, which are standard for evaluating classification models.</p>
161
+ </div>
162
+ """, unsafe_allow_html=True)
163
+ st.markdown("""
164
+ ---
165
+ | ner_tag | precision | recall | f1-score | support |
166
+ |:------------:|:---------:|:------:|:--------:|:-------:|
167
+ | B-DT | 0.95 | 0.29 | 0.44 | 132 |
168
+ | B-LC | 0.00 | 0.00 | 0.00 | 166 |
169
+ | B-OG | 1.00 | 0.06 | 0.11 | 149 |
170
+ | B-PS | 0.86 | 0.13 | 0.23 | 287 |
171
+ | B-TI | 0.50 | 0.05 | 0.09 | 20 |
172
+ | I-DT | 0.94 | 0.36 | 0.52 | 164 |
173
+ | I-LC | 0.00 | 0.00 | 0.00 | 4 |
174
+ | I-OG | 1.00 | 0.08 | 0.15 | 25 |
175
+ | I-PS | 1.00 | 0.08 | 0.15 | 12 |
176
+ | I-TI | 0.50 | 0.10 | 0.17 | 10 |
177
+ | O | 0.94 | 1.00 | 0.97 | 12830 |
178
+ | accuracy | 0.94 | 13799 | | |
179
+ | macro avg | 0.70 | 0.20 | 0.26 | 13799 |
180
+ | weighted avg | 0.93 | 0.94 | 0.92 | 13799 |
181
+ """, unsafe_allow_html=True)
182
+
183
+ st.markdown("""
184
+ <div class="section">
185
+ <p>These results demonstrate the model's ability to accurately identify and classify named entities in Korean text. Precision measures the accuracy of the positive predictions, recall measures the model's ability to find all relevant instances, and F1-score provides a balance between precision and recall.</p>
186
+ </div>
187
+ """, unsafe_allow_html=True)
188
+
189
+ # Conclusion/Summary
190
+ st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
191
+ st.markdown("""
192
+ <div class="section">
193
+ <p>The <code>ner_kmou_glove_840B_300d</code> model demonstrates effective named entity recognition in Korean texts, with varied performance metrics across different entity types. This model leverages <code>glove_840B_300</code> embeddings to enhance its understanding and accuracy in identifying entities like persons, locations, organizations, and more. Its integration into Spark NLP allows for efficient and scalable processing of Korean text data, making it a valuable tool for researchers and developers working with Korean language applications.</p>
194
+ </div>
195
+ """, unsafe_allow_html=True)
196
+
197
+ # References
198
+ st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
199
+ st.markdown("""
200
+ <div class="section">
201
+ <ul>
202
+ <li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li>
203
+ <li>Model Used: <a class="link" href="https://sparknlp.org/2021/01/03/ner_ud_kaist_glove_840B_300d_ko.html" rel="noopener">ner_kmou_glove_840B_300d</a></li>
204
+ <li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>
205
+ <li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>
206
+ </ul>
207
+ </div>
208
+ """, unsafe_allow_html=True)
209
+
210
+ # Community & Support
211
+ st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
212
+ st.markdown("""
213
+ <div class="section">
214
+ <ul>
215
+ <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
216
+ <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub Repository</a>: Report issues or contribute</li>
217
+ <li><a class="link" href="https://forum.johnsnowlabs.com/" target="_blank">Community Forum</a>: Ask questions, share ideas, and get support</li>
218
+ </ul>
219
+ </div>
220
+ """, unsafe_allow_html=True)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ st-annotated-text
3
+ pandas
4
+ numpy
5
+ spark-nlp
6
+ pyspark