Spaces:
Build error
Build error
import streamlit as st | |
st.set_page_config( | |
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. | |
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" | |
page_title='Extractive Summarization', # String or None. Strings get appended with "• Streamlit". | |
page_icon='./favicon.png', # String, anything supported by st.image, or None. | |
) | |
import pandas as pd | |
import numpy as np | |
import os | |
import sys | |
sys.path.append(os.path.abspath('./')) | |
import streamlit_apps_config as config | |
from streamlit_ner_output import show_html2, jsl_display_annotations, get_color | |
import sparknlp | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.sql import functions as F | |
from sparknlp_display import NerVisualizer | |
from pyspark.ml import Pipeline | |
from pyspark.sql.types import StringType | |
spark= sparknlp.start() | |
## Marking down NER Style | |
st.markdown(config.STYLE_CONFIG, unsafe_allow_html=True) | |
root_path = config.project_path | |
########## To Remove the Main Menu Hamburger ######## | |
hide_menu_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_menu_style, unsafe_allow_html=True) | |
########## Side Bar ######## | |
## loading logo(newer version with href) | |
import base64 | |
def get_base64_of_bin_file(bin_file): | |
with open(bin_file, 'rb') as f: | |
data = f.read() | |
return base64.b64encode(data).decode() | |
def get_img_with_href(local_img_path, target_url): | |
img_format = os.path.splitext(local_img_path)[-1].replace('.', '') | |
bin_str = get_base64_of_bin_file(local_img_path) | |
html_code = f''' | |
<a href="{target_url}"> | |
<img height="90%" width="90%" src="data:image/{img_format};base64,{bin_str}" /> | |
</a>''' | |
return html_code | |
logo_html = get_img_with_href('./jsl-logo.png', 'https://www.johnsnowlabs.com/') | |
st.sidebar.markdown(logo_html, unsafe_allow_html=True) | |
#sidebar info | |
model_name= ["nerdl_fewnerd_100d"] | |
st.sidebar.title("Pretrained model to test") | |
selected_model = st.sidebar.selectbox("", model_name) | |
######## Main Page ######### | |
app_title= "Detect up to 8 entity types in general domain texts" | |
app_description= "Named Entity Recognition model aimed to detect up to 8 entity types from general domain texts. This model was trained on the Few-NERD/inter public dataset using Spark NLP, and is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)" | |
st.title(app_title) | |
st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True) | |
if selected_model == "nerdl_fewnerd_100d": | |
st.markdown("**`PERSON`** **,** **`ORGANIZATION`** **,** **`LOCATION`** **,** **`ART`** **,** **`BUILDING`** **,** **`PRODUCT`** **,** **`EVENT`** **,** **`OTHER`**", unsafe_allow_html=True) | |
st.subheader("") | |
#### Running model and creating pipeline | |
st.cache(allow_output_mutation=True) | |
def get_pipeline(text): | |
documentAssembler = DocumentAssembler()\ | |
.setInputCol("text")\ | |
.setOutputCol("document") | |
sentenceDetector= SentenceDetector()\ | |
.setInputCols(["document"])\ | |
.setOutputCol("sentence") | |
tokenizer = Tokenizer()\ | |
.setInputCols(["sentence"])\ | |
.setOutputCol("token") | |
embeddings= WordEmbeddingsModel.pretrained("glove_100d")\ | |
.setInputCols(["sentence", "token"])\ | |
.setOutputCol("embeddings") | |
ner= NerDLModel.pretrained("nerdl_fewnerd_100d")\ | |
.setInputCols(["document", "token", "embeddings"])\ | |
.setOutputCol("ner") | |
ner_converter= NerConverter()\ | |
.setInputCols(["sentence", "token", "ner"])\ | |
.setOutputCol("ner_chunk") | |
pipeline = Pipeline( | |
stages = [ | |
documentAssembler, | |
sentenceDetector, | |
tokenizer, | |
embeddings, | |
ner, | |
ner_converter | |
]) | |
empty_df = spark.createDataFrame([[""]]).toDF("text") | |
pipeline_model = pipeline.fit(empty_df) | |
text_df= spark.createDataFrame(pd.DataFrame({"text": [text]})) | |
result= pipeline_model.transform(text_df).toPandas() | |
return result | |
text= st.text_input("Type here your text and press enter to run:", value="12 Corazones ('12 Hearts') is Spanish-language dating game show produced in the United States for the television network Telemundo since January 2005, based on its namesake Argentine TV show format. The show is filmed in Los Angeles and revolves around the twelve Zodiac signs that identify each contestant. In 2008, Ho filmed a cameo in the Steven Spielberg feature film The Cloverfield Paradox, as a news pundit.") | |
#placeholder for loading warning | |
placeholder= st.empty() | |
placeholder.info("processing text...") | |
result= get_pipeline(text) | |
placeholder.empty() | |
#Displaying Ner Visualization | |
df= pd.DataFrame({"ner_chunk": result["ner_chunk"].iloc[0]}) | |
labels_set = set() | |
for i in df['ner_chunk'].values: | |
labels_set.add(i[4]['entity']) | |
labels_set = list(labels_set) | |
labels = st.sidebar.multiselect( | |
"NER Labels", options=labels_set, default=list(labels_set) | |
) | |
show_html2(text, df, labels, "Text annotated with identified Named Entities") | |