Update Demo.py
Browse files
Demo.py
CHANGED
@@ -1,175 +1,180 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import sparknlp
|
3 |
-
import pandas as pd
|
4 |
-
import json
|
5 |
-
|
6 |
-
from sparknlp.base import *
|
7 |
-
from sparknlp.annotator import *
|
8 |
-
from pyspark.ml import Pipeline
|
9 |
-
from sparknlp.pretrained import PretrainedPipeline
|
10 |
-
|
11 |
-
# Page configuration
|
12 |
-
st.set_page_config(
|
13 |
-
layout="wide",
|
14 |
-
initial_sidebar_state="auto"
|
15 |
-
)
|
16 |
-
|
17 |
-
# CSS for styling
|
18 |
-
st.markdown("""
|
19 |
-
<style>
|
20 |
-
.main-title {
|
21 |
-
font-size: 36px;
|
22 |
-
color: #4A90E2;
|
23 |
-
font-weight: bold;
|
24 |
-
text-align: center;
|
25 |
-
}
|
26 |
-
.section {
|
27 |
-
background-color: #f9f9f9;
|
28 |
-
padding: 10px;
|
29 |
-
border-radius: 10px;
|
30 |
-
margin-top: 10px;
|
31 |
-
}
|
32 |
-
.section p, .section ul {
|
33 |
-
color: #666666;
|
34 |
-
}
|
35 |
-
</style>
|
36 |
-
""", unsafe_allow_html=True)
|
37 |
-
|
38 |
-
@st.cache_resource
|
39 |
-
def init_spark():
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
.setInputCols(["
|
59 |
-
.setOutputCol("
|
60 |
-
|
61 |
-
|
62 |
-
.pretrained("
|
63 |
-
.setInputCols(["questions", "table"])\
|
64 |
-
.setOutputCol("
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
model =
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
<
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
["
|
115 |
-
["
|
116 |
-
["
|
117 |
-
["
|
118 |
-
["
|
119 |
-
["
|
120 |
-
["
|
121 |
-
|
122 |
-
|
123 |
-
'
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"Who is the
|
137 |
-
"
|
138 |
-
"Who
|
139 |
-
"
|
140 |
-
"How many
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
#
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import sparknlp
|
3 |
+
import pandas as pd
|
4 |
+
import json
|
5 |
+
|
6 |
+
from sparknlp.base import *
|
7 |
+
from sparknlp.annotator import *
|
8 |
+
from pyspark.ml import Pipeline
|
9 |
+
from sparknlp.pretrained import PretrainedPipeline
|
10 |
+
|
11 |
+
# Page configuration
|
12 |
+
st.set_page_config(
|
13 |
+
layout="wide",
|
14 |
+
initial_sidebar_state="auto"
|
15 |
+
)
|
16 |
+
|
17 |
+
# CSS for styling
|
18 |
+
st.markdown("""
|
19 |
+
<style>
|
20 |
+
.main-title {
|
21 |
+
font-size: 36px;
|
22 |
+
color: #4A90E2;
|
23 |
+
font-weight: bold;
|
24 |
+
text-align: center;
|
25 |
+
}
|
26 |
+
.section {
|
27 |
+
background-color: #f9f9f9;
|
28 |
+
padding: 10px;
|
29 |
+
border-radius: 10px;
|
30 |
+
margin-top: 10px;
|
31 |
+
}
|
32 |
+
.section p, .section ul {
|
33 |
+
color: #666666;
|
34 |
+
}
|
35 |
+
</style>
|
36 |
+
""", unsafe_allow_html=True)
|
37 |
+
|
38 |
+
@st.cache_resource
|
39 |
+
def init_spark():
|
40 |
+
from pyspark.sql import SparkSession
|
41 |
+
spark = SparkSession.builder \
|
42 |
+
.config("spark.pyspark.python", "/usr/bin/python3.8") \
|
43 |
+
.config("spark.pyspark.driver.python", "/usr/bin/python3.8") \
|
44 |
+
.getOrCreate()
|
45 |
+
return spark
|
46 |
+
|
47 |
+
@st.cache_resource
|
48 |
+
def create_pipeline(model):
|
49 |
+
document_assembler = MultiDocumentAssembler() \
|
50 |
+
.setInputCols("table_json", "questions") \
|
51 |
+
.setOutputCols("document_table", "document_questions")
|
52 |
+
|
53 |
+
sentence_detector = SentenceDetector() \
|
54 |
+
.setInputCols(["document_questions"]) \
|
55 |
+
.setOutputCol("questions")
|
56 |
+
|
57 |
+
table_assembler = TableAssembler()\
|
58 |
+
.setInputCols(["document_table"])\
|
59 |
+
.setOutputCol("table")
|
60 |
+
|
61 |
+
tapas_wtq = TapasForQuestionAnswering\
|
62 |
+
.pretrained("table_qa_tapas_base_finetuned_wtq", "en")\
|
63 |
+
.setInputCols(["questions", "table"])\
|
64 |
+
.setOutputCol("answers_wtq")
|
65 |
+
|
66 |
+
tapas_sqa = TapasForQuestionAnswering\
|
67 |
+
.pretrained("table_qa_tapas_base_finetuned_sqa", "en")\
|
68 |
+
.setInputCols(["questions", "table"])\
|
69 |
+
.setOutputCol("answers_sqa")
|
70 |
+
|
71 |
+
pipeline = Pipeline(stages=[document_assembler, sentence_detector, table_assembler, tapas_wtq, tapas_sqa])
|
72 |
+
return pipeline
|
73 |
+
|
74 |
+
def fit_data(pipeline, json_data, question):
|
75 |
+
spark_df = spark.createDataFrame([[json_data, question]]).toDF("table_json", "questions")
|
76 |
+
model = pipeline.fit(spark_df)
|
77 |
+
result = model.transform(spark_df)
|
78 |
+
return result.select("answers_wtq.result", "answers_sqa.result").collect()
|
79 |
+
|
80 |
+
# Sidebar content
|
81 |
+
model = st.sidebar.selectbox(
|
82 |
+
"Choose the pretrained model",
|
83 |
+
["table_qa_tapas_base_finetuned_wtq", "table_qa_tapas_base_finetuned_sqa"],
|
84 |
+
help="For more info about the models visit: https://sparknlp.org/models"
|
85 |
+
)
|
86 |
+
|
87 |
+
# Set up the page layout
|
88 |
+
title = 'TAPAS for Table-Based Question Answering with Spark NLP'
|
89 |
+
sub_title = (
|
90 |
+
'TAPAS (Table Parsing Supervised via Pre-trained Language Models) is a model that extends '
|
91 |
+
'the BERT architecture to handle tabular data. Unlike traditional models that require flattening '
|
92 |
+
'tables into text, TAPAS can directly interpret tables, making it a powerful tool for answering '
|
93 |
+
'questions that involve tabular data.'
|
94 |
+
)
|
95 |
+
|
96 |
+
st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True)
|
97 |
+
st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)
|
98 |
+
|
99 |
+
# Reference notebook link in sidebar
|
100 |
+
link = """
|
101 |
+
<a href="https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/15.1_Table_Question_Answering.ipynb">
|
102 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
103 |
+
</a>
|
104 |
+
"""
|
105 |
+
st.sidebar.markdown('Reference notebook:')
|
106 |
+
st.sidebar.markdown(link, unsafe_allow_html=True)
|
107 |
+
|
108 |
+
# Define the JSON data for the table
|
109 |
+
# New JSON data
|
110 |
+
json_data = '''
|
111 |
+
{
|
112 |
+
"header": ["name", "net_worth", "age", "nationality", "company", "industry"],
|
113 |
+
"rows": [
|
114 |
+
["Elon Musk", "$200,000,000,000", "52", "American", "Tesla, SpaceX", "Automotive, Aerospace"],
|
115 |
+
["Jeff Bezos", "$150,000,000,000", "60", "American", "Amazon", "E-commerce"],
|
116 |
+
["Bernard Arnault", "$210,000,000,000", "74", "French", "LVMH", "Luxury Goods"],
|
117 |
+
["Bill Gates", "$120,000,000,000", "68", "American", "Microsoft", "Technology"],
|
118 |
+
["Warren Buffett", "$110,000,000,000", "93", "American", "Berkshire Hathaway", "Conglomerate"],
|
119 |
+
["Larry Page", "$100,000,000,000", "51", "American", "Google", "Technology"],
|
120 |
+
["Mark Zuckerberg", "$85,000,000,000", "40", "American", "Meta", "Social Media"],
|
121 |
+
["Mukesh Ambani", "$80,000,000,000", "67", "Indian", "Reliance Industries", "Conglomerate"],
|
122 |
+
["Alice Walton", "$65,000,000,000", "74", "American", "Walmart", "Retail"],
|
123 |
+
["Francoise Bettencourt Meyers", "$70,000,000,000", "70", "French", "L'Oreal", "Cosmetics"],
|
124 |
+
["Amancio Ortega", "$75,000,000,000", "88", "Spanish", "Inditex (Zara)", "Retail"],
|
125 |
+
["Carlos Slim", "$55,000,000,000", "84", "Mexican", "America Movil", "Telecom"]
|
126 |
+
]
|
127 |
+
}
|
128 |
+
'''
|
129 |
+
|
130 |
+
# Define queries for selection
|
131 |
+
queries = [
|
132 |
+
"Who has a higher net worth, Bernard Arnault or Jeff Bezos?",
|
133 |
+
"List the top three individuals by net worth.",
|
134 |
+
"Who is the richest person in the technology industry?",
|
135 |
+
"Which company in the e-commerce industry has the highest net worth?",
|
136 |
+
"Who is the oldest billionaire on the list?",
|
137 |
+
"Which individual under the age of 60 has the highest net worth?",
|
138 |
+
"Who is the wealthiest American, and which company do they own?",
|
139 |
+
"Find all French billionaires and list their companies.",
|
140 |
+
"How many women are on the list, and what are their total net worths?",
|
141 |
+
"Who is the wealthiest non-American on the list?",
|
142 |
+
"Find the person who is the youngest and has a net worth over $100 billion.",
|
143 |
+
"Who owns companies in more than one industry, and what are those industries?",
|
144 |
+
"What is the total net worth of all individuals over 70?",
|
145 |
+
"How many billionaires are in the conglomerate industry?"
|
146 |
+
]
|
147 |
+
|
148 |
+
|
149 |
+
# Load the JSON data into a DataFrame and display it
|
150 |
+
table_data = json.loads(json_data)
|
151 |
+
df_table = pd.DataFrame(table_data["rows"], columns=table_data["header"])
|
152 |
+
df_table.index += 1
|
153 |
+
|
154 |
+
st.write("")
|
155 |
+
st.write("Context DataFrame (Click To Edit)")
|
156 |
+
edited_df = st.data_editor(df_table)
|
157 |
+
|
158 |
+
# Convert edited DataFrame back to JSON format
|
159 |
+
table_json_data = {
|
160 |
+
"header": edited_df.columns.tolist(),
|
161 |
+
"rows": edited_df.values.tolist()
|
162 |
+
}
|
163 |
+
table_json_str = json.dumps(table_json_data)
|
164 |
+
|
165 |
+
# User input for questions
|
166 |
+
selected_text = st.selectbox("Question Query", queries)
|
167 |
+
custom_input = st.text_input("Try it with your own Question!")
|
168 |
+
text_to_analyze = custom_input if custom_input else selected_text
|
169 |
+
|
170 |
+
# Initialize Spark and create the pipeline
|
171 |
+
spark = init_spark()
|
172 |
+
pipeline = create_pipeline(model)
|
173 |
+
|
174 |
+
# Run the pipeline with the selected query and the converted table data
|
175 |
+
output = fit_data(pipeline, table_json_str, text_to_analyze)
|
176 |
+
|
177 |
+
# Display the output
|
178 |
+
st.markdown("---")
|
179 |
+
st.subheader("Processed output:")
|
180 |
+
st.write("**Answer:**", ', '.join(output[0][0]))
|