File size: 11,340 Bytes
939389f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import streamlit as st
import pandas as pd

# Custom CSS for better styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .sub-title {

            font-size: 24px;

            color: #4A90E2;

            margin-top: 20px;

        }

        .section {

            background-color: #f9f9f9;

            padding: 15px;

            border-radius: 10px;

            margin-top: 20px;

        }

        .section h2 {

            font-size: 22px;

            color: #4A90E2;

        }

        .section p, .section ul {

            color: #666666;

        }

        .link {

            color: #4A90E2;

            text-decoration: none;

        }

    </style>

""", unsafe_allow_html=True)

# Main Title
st.markdown('<div class="main-title">Detect Entities in Urdu (urduvec_140M_300d embeddings)</div>', unsafe_allow_html=True)

# Introduction
st.markdown("""

<div class="section">

    <p>Named Entity Recognition (NER) models identify and categorize important entities in a text. This page details a word embeddings-based NER model for Urdu texts, using the <code>urduvec_140M_300d</code> word embeddings. The model is pretrained and available for use with Spark NLP.</p>

</div>

""", unsafe_allow_html=True)

# Model Description
st.markdown('<div class="sub-title">Description</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>This model uses Urdu word embeddings to find 7 different types of entities in Urdu text. It is trained using <code>urduvec_140M_300d</code> word embeddings, so please use the same embeddings in the pipeline. It can identify the following types of entities:</p>

    <ul>

        <li>PER (Persons)</li>

        <li>LOC (Locations)</li>

        <li>ORG (Organizations)</li>

        <li>DATE (Dates)</li>

        <li>TIME (Times)</li>

        <li>DESIGNATION (Designations)</li>

        <li>NUMBER (Numbers)</li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Setup Instructions
st.markdown('<div class="sub-title">Setup</div>', unsafe_allow_html=True)
st.markdown('<p>To use the model, you need Spark NLP installed. You can install it using pip:</p>', unsafe_allow_html=True)
st.code("""

pip install spark-nlp

pip install pyspark

""", language="bash")

st.markdown("<p>Then, import Spark NLP and start a Spark session:</p>", unsafe_allow_html=True)
st.code("""

import sparknlp



# Start Spark Session

spark = sparknlp.start()

""", language='python')

# Example Usage
st.markdown('<div class="sub-title">Example Usage with Urdu NER Model</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>Below is an example of how to set up and use the <code>uner_mk_140M_300d</code> model for named entity recognition in Urdu:</p>

</div>

""", unsafe_allow_html=True)
st.code('''

from sparknlp.base import *

from sparknlp.annotator import *

from pyspark.ml import Pipeline



# Define the components of the pipeline

documentAssembler = DocumentAssembler() \\

    .setInputCol("text") \\

    .setOutputCol("document")



sentence_detector = SentenceDetector() \\

    .setInputCols(["document"]) \\

    .setOutputCol("sentence")



tokenizer = Tokenizer() \\

    .setInputCols(["sentence"]) \\

    .setOutputCol("token")



word_embeddings = WordEmbeddingsModel.pretrained("urduvec_140M_300d", "ur") \\

    .setInputCols(["sentence", "token"]) \\

    .setOutputCol("embeddings")



ner = NerDLModel.pretrained("uner_mk_140M_300d", "ur") \\

    .setInputCols(["sentence", "token", "embeddings"]) \\

    .setOutputCol("ner")



ner_converter = NerConverter().setInputCols(["sentence", "token", "ner"]).setOutputCol("ner_chunk")



# Create the pipeline

pipeline = Pipeline(stages=[documentAssembler, sentence_detector, tokenizer, word_embeddings, ner, ner_converter])



# Create sample data

example = """

بریگیڈیئر ایڈ بٹلر سنہ دوہزارچھ میں ہلمند کے فوجی کمانڈر تھے۔

"""

data = spark.createDataFrame([[example]]).toDF("text")



# Fit and transform data with the pipeline

result = pipeline.fit(data).transform(data)



# Select the result, entity

result.select(

    expr("explode(ner_chunk) as ner_chunk")

).select(

    col("ner_chunk.result").alias("chunk"),

    col("ner_chunk.metadata").getItem("entity").alias("ner_label")

).show(truncate=False)

''', language="python")

import pandas as pd

# Create the data for the DataFrame
data = {
    "chunk": [
        "بریگیڈیئر", 
        "ایڈ بٹلر", 
        "سنہ دوہزارچھ", 
        "ہلمند"
    ],
    "ner_label": [
        "DESIGNATION", 
        "PERSON", 
        "DATE", 
        "LOCATION"
    ]
}

# Creating the DataFrame
df = pd.DataFrame(data)
df.index += 1
st.dataframe(df)

# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The <code>uner_mk_140M_300d</code> model details are as follows:</p>

    <ul>

        <li><strong>Model Name:</strong> uner_mk_140M_300d</li>

        <li><strong>Type:</strong> ner</li>

        <li><strong>Compatibility:</strong> Spark NLP 4.0.2+</li>

        <li><strong>License:</strong> Open Source</li>

        <li><strong>Edition:</strong> Official</li>

        <li><strong>Input Labels:</strong> [document, token, word_embeddings]</li>

        <li><strong>Output Labels:</strong> [ner]</li>

        <li><strong>Language:</strong> ur</li>

        <li><strong>Size:</strong> 14.8 MB</li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Benchmark Section
st.markdown('<div class="sub-title">Benchmark</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>Evaluating the performance of NER models is crucial to understanding their effectiveness in real-world applications. Below are the benchmark results for the <code>uner_mk_140M_300d</code> model, focusing on various named entity categories. The metrics used include precision, recall, and F1-score, which are standard for evaluating classification models.</p>

</div>

""", unsafe_allow_html=True)
st.markdown("""

---

| Label            | TP    | FP  | FN  | Precision | Recall  | F1-Score |

|------------------|-------|-----|-----|-----------|---------|----------|

| I-TIME           | 12    | 10  | 1   | 0.545455  | 0.923077| 0.685714 |

| B-PERSON         | 2808  | 846 | 535 | 0.768473  | 0.839964| 0.802630 |

| B-DATE           | 34    | 6   | 6   | 0.850000  | 0.850000| 0.850000 |

| I-DATE           | 45    | 1   | 2   | 0.978261  | 0.957447| 0.967742 |

| B-DESIGNATION    | 49    | 30  | 16  | 0.620253  | 0.753846| 0.680556 |

| I-LOCATION       | 2110  | 750 | 701 | 0.737762  | 0.750623| 0.744137 |

| B-TIME           | 11    | 9   | 3   | 0.550000  | 0.785714| 0.647059 |

| I-ORGANIZATION   | 2006  | 772 | 760 | 0.722102  | 0.725235| 0.723665 |

| I-NUMBER         | 18    | 6   | 2   | 0.750000  | 0.900000| 0.818182 |

| B-LOCATION       | 5428  | 1255| 582 | 0.812210  | 0.903161| 0.855275 |

| B-NUMBER         | 194   | 36  | 27  | 0.843478  | 0.877828| 0.860298 |

| B-ORGANIZATION   | 4364  | 1092| 990 | 0.799926  | 0.815058| 0.807421 |

| I-DESIGNATION    | 57    | 15  | 10  | 0.791667  | 0.850746| 0.820896 |

| B-MISC           | 18    | 19  | 13  | 0.486486  | 0.580645| 0.529412 |

| I-MISC           | 10    | 11  | 10  | 0.476190  | 0.500000| 0.487805 |

| I-PERSON         | 1891  | 689 | 622 | 0.732723  | 0.752499| 0.742486 |

---

""", unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <p>These results demonstrate the model's ability to accurately identify and classify named entities in Urdu text. Precision measures the accuracy of the positive predictions, recall measures the model's ability to find all relevant instances, and F1-score provides a balance between precision and recall.</p>

</div>

""", unsafe_allow_html=True)

# Try the Model
st.markdown('<div class="sub-title">Try the Model</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>You can use the <code>LightPipeline</code> to quickly test the model on small texts. Here is an example:</p>

</div>

""", unsafe_allow_html=True)
st.code('''

from sparknlp.base import LightPipeline



# Create a LightPipeline

light_pipeline = LightPipeline(pipeline.fit(data))



# Annotate a simple text

example_text = "بریگیڈیئر ایڈ بٹلر سنہ دوہزارچھ میں ہلمند کے فوجی کمانڈر تھے۔"

annotations = light_pipeline.fullAnnotate(example_text)



# Display the annotations

for annotation in annotations[0]['ner_chunk']:

    print(annotation.result, "->", annotation.metadata['entity'])

''', language="python")

# Conclusion/Summary
st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The <code>uner_mk_140M_300d</code> model demonstrates effective named entity recognition in Urdu texts, with strong performance metrics across various entity types. This model leverages <code>urduvec_140M_300d</code> embeddings to enhance its understanding and accuracy in identifying entities like persons, locations, organizations, and more. Its integration into Spark NLP allows for efficient and scalable processing of Urdu text data, making it a valuable tool for researchers and developers working with Urdu language applications.</p>

</div>

""", unsafe_allow_html=True)

# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li>

        <li>Model Used: <a class="link" href="https://sparknlp.org/2022/08/09/uner_mk_140M_300d_ur_3_0.html" rel="noopener">uner_mk_140M_300d_ur_3_0</a></li>

        <li><a class="link" href="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/" target="_blank" rel="noopener">Data Source</a></li>

        <li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>

        <li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub Repository</a>: Report issues or contribute</li>

        <li><a class="link" href="https://forum.johnsnowlabs.com/" target="_blank">Community Forum</a>: Ask questions, share ideas, and get support</li>

    </ul>

</div>

""", unsafe_allow_html=True)