File size: 11,340 Bytes
939389f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import streamlit as st
import pandas as pd
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
</style>
""", unsafe_allow_html=True)
# Main Title
st.markdown('<div class="main-title">Detect Entities in Urdu (urduvec_140M_300d embeddings)</div>', unsafe_allow_html=True)
# Introduction
st.markdown("""
<div class="section">
<p>Named Entity Recognition (NER) models identify and categorize important entities in a text. This page details a word embeddings-based NER model for Urdu texts, using the <code>urduvec_140M_300d</code> word embeddings. The model is pretrained and available for use with Spark NLP.</p>
</div>
""", unsafe_allow_html=True)
# Model Description
st.markdown('<div class="sub-title">Description</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>This model uses Urdu word embeddings to find 7 different types of entities in Urdu text. It is trained using <code>urduvec_140M_300d</code> word embeddings, so please use the same embeddings in the pipeline. It can identify the following types of entities:</p>
<ul>
<li>PER (Persons)</li>
<li>LOC (Locations)</li>
<li>ORG (Organizations)</li>
<li>DATE (Dates)</li>
<li>TIME (Times)</li>
<li>DESIGNATION (Designations)</li>
<li>NUMBER (Numbers)</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Setup Instructions
st.markdown('<div class="sub-title">Setup</div>', unsafe_allow_html=True)
st.markdown('<p>To use the model, you need Spark NLP installed. You can install it using pip:</p>', unsafe_allow_html=True)
st.code("""
pip install spark-nlp
pip install pyspark
""", language="bash")
st.markdown("<p>Then, import Spark NLP and start a Spark session:</p>", unsafe_allow_html=True)
st.code("""
import sparknlp
# Start Spark Session
spark = sparknlp.start()
""", language='python')
# Example Usage
st.markdown('<div class="sub-title">Example Usage with Urdu NER Model</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Below is an example of how to set up and use the <code>uner_mk_140M_300d</code> model for named entity recognition in Urdu:</p>
</div>
""", unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
# Define the components of the pipeline
documentAssembler = DocumentAssembler() \\
.setInputCol("text") \\
.setOutputCol("document")
sentence_detector = SentenceDetector() \\
.setInputCols(["document"]) \\
.setOutputCol("sentence")
tokenizer = Tokenizer() \\
.setInputCols(["sentence"]) \\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("urduvec_140M_300d", "ur") \\
.setInputCols(["sentence", "token"]) \\
.setOutputCol("embeddings")
ner = NerDLModel.pretrained("uner_mk_140M_300d", "ur") \\
.setInputCols(["sentence", "token", "embeddings"]) \\
.setOutputCol("ner")
ner_converter = NerConverter().setInputCols(["sentence", "token", "ner"]).setOutputCol("ner_chunk")
# Create the pipeline
pipeline = Pipeline(stages=[documentAssembler, sentence_detector, tokenizer, word_embeddings, ner, ner_converter])
# Create sample data
example = """
بریگیڈیئر ایڈ بٹلر سنہ دوہزارچھ میں ہلمند کے فوجی کمانڈر تھے۔
"""
data = spark.createDataFrame([[example]]).toDF("text")
# Fit and transform data with the pipeline
result = pipeline.fit(data).transform(data)
# Select the result, entity
result.select(
expr("explode(ner_chunk) as ner_chunk")
).select(
col("ner_chunk.result").alias("chunk"),
col("ner_chunk.metadata").getItem("entity").alias("ner_label")
).show(truncate=False)
''', language="python")
import pandas as pd
# Create the data for the DataFrame
data = {
"chunk": [
"بریگیڈیئر",
"ایڈ بٹلر",
"سنہ دوہزارچھ",
"ہلمند"
],
"ner_label": [
"DESIGNATION",
"PERSON",
"DATE",
"LOCATION"
]
}
# Creating the DataFrame
df = pd.DataFrame(data)
df.index += 1
st.dataframe(df)
# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The <code>uner_mk_140M_300d</code> model details are as follows:</p>
<ul>
<li><strong>Model Name:</strong> uner_mk_140M_300d</li>
<li><strong>Type:</strong> ner</li>
<li><strong>Compatibility:</strong> Spark NLP 4.0.2+</li>
<li><strong>License:</strong> Open Source</li>
<li><strong>Edition:</strong> Official</li>
<li><strong>Input Labels:</strong> [document, token, word_embeddings]</li>
<li><strong>Output Labels:</strong> [ner]</li>
<li><strong>Language:</strong> ur</li>
<li><strong>Size:</strong> 14.8 MB</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Benchmark Section
st.markdown('<div class="sub-title">Benchmark</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Evaluating the performance of NER models is crucial to understanding their effectiveness in real-world applications. Below are the benchmark results for the <code>uner_mk_140M_300d</code> model, focusing on various named entity categories. The metrics used include precision, recall, and F1-score, which are standard for evaluating classification models.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("""
---
| Label | TP | FP | FN | Precision | Recall | F1-Score |
|------------------|-------|-----|-----|-----------|---------|----------|
| I-TIME | 12 | 10 | 1 | 0.545455 | 0.923077| 0.685714 |
| B-PERSON | 2808 | 846 | 535 | 0.768473 | 0.839964| 0.802630 |
| B-DATE | 34 | 6 | 6 | 0.850000 | 0.850000| 0.850000 |
| I-DATE | 45 | 1 | 2 | 0.978261 | 0.957447| 0.967742 |
| B-DESIGNATION | 49 | 30 | 16 | 0.620253 | 0.753846| 0.680556 |
| I-LOCATION | 2110 | 750 | 701 | 0.737762 | 0.750623| 0.744137 |
| B-TIME | 11 | 9 | 3 | 0.550000 | 0.785714| 0.647059 |
| I-ORGANIZATION | 2006 | 772 | 760 | 0.722102 | 0.725235| 0.723665 |
| I-NUMBER | 18 | 6 | 2 | 0.750000 | 0.900000| 0.818182 |
| B-LOCATION | 5428 | 1255| 582 | 0.812210 | 0.903161| 0.855275 |
| B-NUMBER | 194 | 36 | 27 | 0.843478 | 0.877828| 0.860298 |
| B-ORGANIZATION | 4364 | 1092| 990 | 0.799926 | 0.815058| 0.807421 |
| I-DESIGNATION | 57 | 15 | 10 | 0.791667 | 0.850746| 0.820896 |
| B-MISC | 18 | 19 | 13 | 0.486486 | 0.580645| 0.529412 |
| I-MISC | 10 | 11 | 10 | 0.476190 | 0.500000| 0.487805 |
| I-PERSON | 1891 | 689 | 622 | 0.732723 | 0.752499| 0.742486 |
---
""", unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>These results demonstrate the model's ability to accurately identify and classify named entities in Urdu text. Precision measures the accuracy of the positive predictions, recall measures the model's ability to find all relevant instances, and F1-score provides a balance between precision and recall.</p>
</div>
""", unsafe_allow_html=True)
# Try the Model
st.markdown('<div class="sub-title">Try the Model</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>You can use the <code>LightPipeline</code> to quickly test the model on small texts. Here is an example:</p>
</div>
""", unsafe_allow_html=True)
st.code('''
from sparknlp.base import LightPipeline
# Create a LightPipeline
light_pipeline = LightPipeline(pipeline.fit(data))
# Annotate a simple text
example_text = "بریگیڈیئر ایڈ بٹلر سنہ دوہزارچھ میں ہلمند کے فوجی کمانڈر تھے۔"
annotations = light_pipeline.fullAnnotate(example_text)
# Display the annotations
for annotation in annotations[0]['ner_chunk']:
print(annotation.result, "->", annotation.metadata['entity'])
''', language="python")
# Conclusion/Summary
st.markdown('<div class="sub-title">Conclusion</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The <code>uner_mk_140M_300d</code> model demonstrates effective named entity recognition in Urdu texts, with strong performance metrics across various entity types. This model leverages <code>urduvec_140M_300d</code> embeddings to enhance its understanding and accuracy in identifying entities like persons, locations, organizations, and more. Its integration into Spark NLP allows for efficient and scalable processing of Urdu text data, making it a valuable tool for researchers and developers working with Urdu language applications.</p>
</div>
""", unsafe_allow_html=True)
# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/api/python/reference/autosummary/sparknlp/annotator/ner/ner_dl/index.html" target="_blank" rel="noopener">NerDLModel</a> annotator documentation</li>
<li>Model Used: <a class="link" href="https://sparknlp.org/2022/08/09/uner_mk_140M_300d_ur_3_0.html" rel="noopener">uner_mk_140M_300d_ur_3_0</a></li>
<li><a class="link" href="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/" target="_blank" rel="noopener">Data Source</a></li>
<li><a class="link" href="https://nlp.johnsnowlabs.com/recognize_entitie" target="_blank" rel="noopener">Visualization demos for NER in Spark NLP</a></li>
<li><a class="link" href="https://www.johnsnowlabs.com/named-entity-recognition-ner-with-bert-in-spark-nlp/">Named Entity Recognition (NER) with BERT in Spark NLP</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub Repository</a>: Report issues or contribute</li>
<li><a class="link" href="https://forum.johnsnowlabs.com/" target="_blank">Community Forum</a>: Ask questions, share ideas, and get support</li>
</ul>
</div>
""", unsafe_allow_html=True)
|