Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sparknlp | |
import os | |
import pandas as pd | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
from sparknlp.pretrained import PretrainedPipeline | |
from streamlit_tags import st_tags | |
# Page configuration | |
st.set_page_config( | |
layout="wide", | |
initial_sidebar_state="auto" | |
) | |
# CSS for styling | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 36px; | |
color: #4A90E2; | |
font-weight: bold; | |
text-align: center; | |
} | |
.section { | |
background-color: #f9f9f9; | |
padding: 10px; | |
border-radius: 10px; | |
margin-top: 10px; | |
} | |
.section p, .section ul { | |
color: #666666; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def init_spark(): | |
return sparknlp.start() | |
def create_pipeline(model): | |
image_assembler = ImageAssembler() \ | |
.setInputCol("image") \ | |
.setOutputCol("image_assembler") | |
image_classifier = ViTForImageClassification \ | |
.pretrained(model) \ | |
.setInputCols("image_assembler") \ | |
.setOutputCol("class") | |
pipeline = Pipeline(stages=[ | |
image_assembler, | |
image_classifier, | |
]) | |
return pipeline | |
def fit_data(pipeline, data): | |
empty_df = spark.createDataFrame([['']]).toDF('text') | |
model = pipeline.fit(empty_df) | |
light_pipeline = LightPipeline(model) | |
annotations_result = light_pipeline.fullAnnotateImage(data) | |
return annotations_result[0]['class'][0].result | |
def save_uploadedfile(uploadedfile): | |
filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name) | |
with open(filepath, "wb") as f: | |
if hasattr(uploadedfile, 'getbuffer'): | |
f.write(uploadedfile.getbuffer()) | |
else: | |
f.write(uploadedfile.read()) | |
# Sidebar content | |
model_list = ['image_classifier_vit_base_cats_vs_dogs', 'image_classifier_vit_base_patch16_224', 'image_classifier_vit_CarViT', 'image_classifier_vit_base_beans_demo', 'image_classifier_vit_base_food101', 'image_classifier_vit_base_patch16_224_in21k_finetuned_cifar10'] | |
model = st.sidebar.selectbox( | |
"Choose the pretrained model", | |
model_list, | |
help="For more info about the models visit: https://sparknlp.org/models" | |
) | |
# Set up the page layout | |
st.markdown(f'<div class="main-title">ViT for Image Classification</div>', unsafe_allow_html=True) | |
# st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True) | |
# Reference notebook link in sidebar | |
link = """ | |
<a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/ViTForImageClassification.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> | |
</a> | |
""" | |
st.sidebar.markdown('Reference notebook:') | |
st.sidebar.markdown(link, unsafe_allow_html=True) | |
# Load examples | |
IMAGE_FILE_PATH = f"inputs/{model}" | |
image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg']) | |
st.subheader("This model identifies image classes using the vision transformer (ViT).") | |
img_options = st.selectbox("Select an image", image_files) | |
uploadedfile = st.file_uploader("Try it for yourself!") | |
if uploadedfile: | |
file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type} | |
save_uploadedfile(uploadedfile) | |
selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}" | |
elif img_options: | |
selected_image = f"{IMAGE_FILE_PATH}/{img_options}" | |
st.subheader('Classified Image') | |
image_size = st.slider('Image Size', 400, 1000, value=400, step = 100) | |
try: | |
st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size) | |
except: | |
st.image(selected_image, width=image_size) | |
st.subheader('Classification') | |
spark = init_spark() | |
Pipeline = create_pipeline(model) | |
output = fit_data(Pipeline, selected_image) | |
st.markdown(f'This document has been classified as : **{output}**') |