Wav2Vec2ForCTC / Demo.py
abdullahmubeen10's picture
Upload 15 files
6b52778 verified
raw
history blame
4.64 kB
import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# Custom CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section {
background-color: #f9f9f9;
padding: 10px;
border-radius: 10px;
margin-top: 10px;
}
.section p, .section ul {
color: #666666;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
"""Initialize Spark NLP."""
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
"""Create a Spark NLP pipeline for audio processing."""
audio_assembler = AudioAssembler() \
.setInputCol("audio_content") \
.setOutputCol("audio_assembler")
speech_to_text = Wav2Vec2ForCTC \
.pretrained(model)\
.setInputCols("audio_assembler") \
.setOutputCol("text")
pipeline = Pipeline(stages=[
audio_assembler,
speech_to_text
])
return pipeline
def fit_data(pipeline, fed_data):
"""Fit the data into the pipeline and return the transcription."""
data, sampling_rate = librosa.load(fed_data, sr=16000)
data = [float(x) for x in data]
schema = StructType([
StructField("audio_content", ArrayType(FloatType())),
StructField("sampling_rate", LongType())
])
df = pd.DataFrame({
"audio_content": [data],
"sampling_rate": [sampling_rate]
})
spark_df = spark.createDataFrame(df, schema)
pipeline_df = pipeline.fit(spark_df).transform(spark_df)
return pipeline_df.select("text.result")
def save_uploadedfile(uploadedfile, path):
"""Save the uploaded file to the specified path."""
filepath = os.path.join(path, uploadedfile.name)
with open(filepath, "wb") as f:
if hasattr(uploadedfile, 'getbuffer'):
f.write(uploadedfile.getbuffer())
else:
f.write(uploadedfile.read())
# Sidebar content
model_list = [
"asr_wav2vec2_large_xlsr_53_english_by_jonatasgrosman",
"asr_wav2vec2_base_100h_13K_steps",
"asr_wav2vec2_base_100h_ngram",
"asr_wav2vec2_base_100h_by_facebook",
"asr_wav2vec2_base_100h_test",
"asr_wav2vec2_base_960h"
]
model = st.sidebar.selectbox(
"Choose the pretrained model",
model_list,
help="For more info about the models visit: https://sparknlp.org/models"
)
# Main content
st.markdown('<div class="main-title">Speech Recognition With Wav2Vec2ForCTC</div>', unsafe_allow_html=True)
st.markdown('<div class="section"><p>This demo transcribes audio files into texts using the <code>Wav2Vec2ForCTC</code> Annotator and advanced speech recognition models.</p></div>', unsafe_allow_html=True)
# Reference notebook link in sidebar
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown("""
<a href="https://githubtocolab.com/JohnSnowLabs/spark-nlp-workshop/blob/master/open-source-nlp/17.0.Automatic_Speech_Recognition_Wav2Vec2.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
""", unsafe_allow_html=True)
# Load examples
AUDIO_FILE_PATH = "inputs"
audio_files = sorted(os.listdir(AUDIO_FILE_PATH))
selected_audio = st.selectbox("Select an audio", audio_files)
# Creating a simplified Python list of audio file types
audio_file_types = ["mp3", "flac", "wav", "aac", "ogg", "aiff", "wma", "m4a", "ape", "dsf", "dff", "midi", "mid", "opus", "amr"]
uploadedfile = st.file_uploader("Try it for yourself!", type=audio_file_types)
if uploadedfile:
selected_audio = f"{AUDIO_FILE_PATH}/{uploadedfile.name}"
save_uploadedfile(uploadedfile, AUDIO_FILE_PATH)
elif selected_audio:
selected_audio = f"{AUDIO_FILE_PATH}/{selected_audio}"
# Audio playback and transcription
st.subheader("Play Audio")
with open(selected_audio, 'rb') as audio_file:
audio_bytes = audio_file.read()
st.audio(audio_bytes)
st.subheader(f"Transcription for {selected_audio}:")
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_audio)
st.text(output.first().result[0].strip())