import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
# Page configuration
st.set_page_config(
layout="wide",
page_title="Spark NLP Demos App",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
use = UniversalSentenceEncoder.pretrained()\
.setInputCols(["document"])\
.setOutputCol("sentence_embeddings")
sentimentdl = ClassifierDLModel.pretrained(model)\
.setInputCols(["sentence_embeddings"])\
.setOutputCol("sentiment")
nlpPipeline = Pipeline(stages = [documentAssembler, use, sentimentdl])
return nlpPipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
results = model.fullAnnotate(data)[0]
return results['sentiment'][0].result
# Set up the page layout
st.markdown('
Detect Cyberbullying in Tweets with Spark NLP
', unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["classifierdl_use_cyberbullying"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
link = """
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
examples = [
"@CALMicC he kept me informed on stuff id missed and seemed ok. I liked him.",
"@AMohedin Okay, we have women being physically inferior and the either emotionally or mentally inferior in some way.",
"@LynnMagic people think that implying association via follow is a bad thing. but it's shockingly accurate.",
"@Rayandawlah_ @_Jihad10 These days might and honor come from science, technology, humanitarianism. Which is why Muslims won't get any.",
"Stay outve Congress and we have a deal. @jacobkramer17 Call me sexist bt the super bowl should b guys only no women are allowed n th stadium",
"I'm looking for a few people to help with @ggautoblocker's twitter. Log & categorize mentions as support requests/abusive/positive tweets.",
"@geeky_zekey Thanks for showing again that blacks are the biggest racists. Blocked",
"""@ListenToRaisin No question. Feminists have the media. Did you see any mention of Clem Fords OPEN bigotry, etc? Nope. "Narrative" is all.""",
"RT @EBeisner @ahall012 I agree with you!! I would rather brush my teeth with sandpaper then watch football with a girl!!",
"@hibach8 But it is a lie. The religion is a disgusting, terrorist, hate mongering piece of filth. That has nothing to do with individuals."
]
st.subheader("Identify Racism, Sexism or Neutral tweets using our pretrained emotions detector.")
selected_text = st.selectbox("Select a sample", examples)
custom_input = st.text_input("Try it for yourself!")
if custom_input:
selected_text = custom_input
elif selected_text:
selected_text = selected_text
st.subheader('Selected Text')
st.write(selected_text)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)
# Display output sentence
if output.lower() in ['neutral', 'normal']:
st.markdown("""This seems like a {} tweet. 😃
""".format(output), unsafe_allow_html=True)
elif output.lower() in ['racism', 'sexism']:
st.markdown("""This seems like a {} tweet. 🤬
""".format(output), unsafe_allow_html=True)