import streamlit as st import sparknlp import os import pandas as pd from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline from sparknlp.pretrained import PretrainedPipeline # Page configuration st.set_page_config( layout="wide", page_title="Spark NLP Demos App", initial_sidebar_state="auto" ) # CSS for styling st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource def init_spark(): return sparknlp.start() @st.cache_resource def create_pipeline(model): documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") use = UniversalSentenceEncoder.pretrained()\ .setInputCols(["document"])\ .setOutputCol("sentence_embeddings") sentimentdl = ClassifierDLModel.pretrained(model)\ .setInputCols(["sentence_embeddings"])\ .setOutputCol("sentiment") nlpPipeline = Pipeline(stages = [documentAssembler, use, sentimentdl]) return nlpPipeline def fit_data(pipeline, data): empty_df = spark.createDataFrame([['']]).toDF('text') pipeline_model = pipeline.fit(empty_df) model = LightPipeline(pipeline_model) results = model.fullAnnotate(data)[0] return results['sentiment'][0].result # Set up the page layout st.markdown('
Detect Sarcastic Tweets with Spark NLP
', unsafe_allow_html=True) # Sidebar content model = st.sidebar.selectbox( "Choose the pretrained model", ["classifierdl_use_sarcasm"], help="For more info about the models visit: https://sparknlp.org/models" ) # Reference notebook link in sidebar link = """ Open In Colab """ st.sidebar.markdown('Reference notebook:') st.sidebar.markdown(link, unsafe_allow_html=True) # Load examples examples = [ "Love getting home from work knowing that in less than 8hours you're getting up to go back there again.", "Oh my gosh! Can you imagine @JessieJ playing piano on her tour while singing a song. I would die and go to heaven. #sheisanangel", "Dear Teva, thank you for waking me up every few hours by howling. Your just trying to be mother natures alarm clock.", "The United States is a signatory to this international convention", "If I could put into words how much I love waking up at am on Tuesdays I would", "@pdomo Don't forget that Nick Foles is also the new Tom Brady. What a preseason! #toomanystudQBs #thankgodwedonthavetebow", "I cant even describe how excited I am to go cook noodles for hours", "@Will_Piper should move back up fella. I'm already here... On my own... Having loads of fun", "Tweeting at work... Having sooooo much fun and honestly not bored at all #countdowntillfinish", "I can do what I want to. I play by my own rules" ] selected_text = st.selectbox("Select a sample", examples) custom_input = st.text_input("Try it for yourself!") if custom_input: selected_text = custom_input elif selected_text: selected_text = selected_text st.subheader('Selected Text') st.write(selected_text) st.subheader('Selected Text') st.write(selected_text) # Initialize Spark and create pipeline spark = init_spark() pipeline = create_pipeline(model) output = fit_data(pipeline, selected_text) # Display output sentence if output in ['neutral', 'normal']: st.markdown("""

This seems like {} news. 🙂

""".format(output), unsafe_allow_html=True) elif output == 'sarcasm': st.markdown("""

This seems like a {} tweet. 🙃

""".format('sarcastic'), unsafe_allow_html=True)