Spaces:
Sleeping
Sleeping
File size: 4,661 Bytes
4947cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from annotated_text import annotated_text
# Page configuration
st.set_page_config(
layout="wide",
page_title="Spark NLP Demos App",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section p, .section ul {
color: #666666;
}
.stTable {
margin-left: auto;
margin-right: auto;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
sentence_detector = SentenceDetector() \
.setInputCols(['document']) \
.setOutputCol('sentences')
tokenizer = Tokenizer() \
.setInputCols(['sentences']) \
.setOutputCol('tokens') \
.setContextChars(['(', ')', '?', '!', '.', ','])
keywords = YakeKeywordExtraction() \
.setInputCols('tokens') \
.setOutputCol('keywords') \
.setMinNGrams(2) \
.setMaxNGrams(5) \
.setNKeywords(100) \
.setStopWords(StopWordsCleaner().getStopWords())
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
keywords
])
return pipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
results = model.fullAnnotate(data)[0]
return results
def highlight_keywords(data):
document_text = data["document"][0].result
keywords = data["keywords"]
annotations = []
last_index = 0
for keyword in keywords:
keyword_text = keyword.result
start_index = document_text.find(keyword_text, last_index)
if start_index != -1:
if start_index > last_index:
annotations.append(document_text[last_index:start_index])
annotations.append((keyword_text, 'Key Word'))
last_index = start_index + len(keyword_text)
if last_index < len(document_text):
annotations.append(document_text[last_index:])
annotated_text(*annotations)
# Set up the page layout
st.markdown('<div class="main-title">Detect Key Phrases With Spark NLP</div>', unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["yake_model"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/KEYPHRASE_EXTRACTION.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
folder_path = f"inputs/{model}"
examples = [
lines[1].strip()
for filename in os.listdir(folder_path)
if filename.endswith('.txt')
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()]
if len(lines) >= 2
]
selected_text = st.selectbox("Select a sample text", examples)
custom_input = st.text_input("Try it for yourself!")
if custom_input:
selected_text = custom_input
elif selected_text:
selected_text = selected_text
st.subheader('Selected Text')
st.write(selected_text)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)
# Display output
st.subheader("Annotated Document:")
highlight_keywords(output)
keys_df = pd.DataFrame([(k.result, k.begin, k.end, k.metadata['score'], k.metadata['sentence']) for k in output['keywords']],
columns=['keywords', 'begin', 'end', 'score', 'sentence'])
keys_df['score'] = keys_df['score'].astype(float)
# ordered by relevance
with st.expander("View Data Table"):
st.table(keys_df.sort_values(['sentence', 'score'])) |