File size: 5,032 Bytes
1611e10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
# Page configuration
st.set_page_config(
layout="wide",
page_title="Spark NLP Financial Sentiment Analysis",
initial_sidebar_state="expanded"
)
# CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section p, .section ul {
color: #666666;
}
.result-positive {
color: green;
}
.result-negative {
color: red;
}
.result-neutral {
color: #209DDC;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
document = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
embeddings = BertSentenceEmbeddings\
.pretrained('sent_bert_wiki_books_sst2', 'en') \
.setInputCols(["document"])\
.setOutputCol("sentence_embeddings")
sentimentClassifier = ClassifierDLModel.pretrained("classifierdl_bertwiki_finance_sentiment", "en") \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("class_")
financial_sentiment_pipeline = Pipeline(
stages=[document,
embeddings,
sentimentClassifier])
return financial_sentiment_pipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
results = model.fullAnnotate(data)[0]
return results['class_'][0].result
# Set up the page layout
st.markdown('<div class="main-title">Sentiment Analysis of Financial News with Spark NLP</div>', unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["classifierdl_bertwiki_finance_sentiment"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
colab_link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/SENTIMENT_EN_FINANCE.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(colab_link, unsafe_allow_html=True)
# Load examples
examples = [
"In April 2005, Neste separated from its parent company, Finnish energy company Fortum, and became listed on the Helsinki Stock Exchange.",
"Finnish IT solutions provider Affecto Oyj HEL: AFE1V said today it slipped to a net loss of EUR 115,000 USD 152,000 in the second quarter of 2010 from a profit of EUR 845,000 in the corresponding period a year earlier.",
"10 February 2011 - Finnish media company Sanoma Oyj HEL: SAA1V said yesterday its 2010 net profit almost tripled to EUR297.3m from EUR107.1m for 2009 and announced a proposal for a raised payout.",
"Profit before taxes decreased by 9% to EUR 187.8 mn in the first nine months of 2008, compared to EUR 207.1 mn a year earlier.",
"The world's second largest stainless steel maker said net profit in the three-month period until Dec. 31 surged to euro603 million US$ 781 million, or euro3.33 US$ 4.31 per share, from euro172 million, or euro0.94 per share, the previous year.",
"TietoEnator signed an agreement to acquire Indian research and development (R&D) services provider and turnkey software solutions developer Fortuna Technologies Pvt. Ltd. for 21 mln euro ($30.3 mln) in September 2007."
]
# User input selection
selected_text = st.selectbox("Select a sample", examples)
custom_input = st.text_input("Try it for yourself!")
# Use custom input if provided
if custom_input:
selected_text = custom_input
st.subheader('Selected Text')
st.write(selected_text)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)
# Display output sentiment
if output.lower() in ['pos', 'positive']:
st.markdown(f"""<h3>This seems like <span class="result-positive">positive</span> news. <span style="font-size:35px;">😃</span></h3>""", unsafe_allow_html=True)
elif output.lower() in ['neg', 'negative']:
st.markdown(f"""<h3>This seems like <span class="result-negative">negative</span> news. <span style="font-size:35px;">😠</span></h3>""", unsafe_allow_html=True)
else:
st.markdown(f"""<h3>This seems like <span class="result-neutral">{output}</span> news. <span style="font-size:35px;">🙂</span></h3>""", unsafe_allow_html=True)
|