|
import streamlit as st
|
|
import sparknlp
|
|
import os
|
|
import pandas as pd
|
|
|
|
from sparknlp.base import *
|
|
from sparknlp.annotator import *
|
|
from pyspark.ml import Pipeline
|
|
from sparknlp.pretrained import PretrainedPipeline
|
|
|
|
|
|
st.set_page_config(
|
|
layout="wide",
|
|
page_title="Spark NLP Demos App",
|
|
initial_sidebar_state="auto"
|
|
)
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.main-title {
|
|
font-size: 36px;
|
|
color: #4A90E2;
|
|
font-weight: bold;
|
|
text-align: center;
|
|
}
|
|
.section p, .section ul {
|
|
color: #666666;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
@st.cache_resource
|
|
def init_spark():
|
|
return sparknlp.start()
|
|
|
|
@st.cache_resource
|
|
def create_pipeline(model):
|
|
documentAssembler = DocumentAssembler()\
|
|
.setInputCol("text")\
|
|
.setOutputCol("document")
|
|
|
|
use = UniversalSentenceEncoder.pretrained("tfhub_use", "en")\
|
|
.setInputCols(["document"])\
|
|
.setOutputCol("sentence_embeddings")
|
|
|
|
|
|
sentimentdl = SentimentDLModel.pretrained(model, "en")\
|
|
.setInputCols(["sentence_embeddings"])\
|
|
.setOutputCol("sentiment")
|
|
|
|
nlpPipeline = Pipeline(stages=[documentAssembler, use, sentimentdl])
|
|
|
|
return nlpPipeline
|
|
|
|
def fit_data(pipeline, data):
|
|
empty_df = spark.createDataFrame([['']]).toDF('text')
|
|
pipeline_model = pipeline.fit(empty_df)
|
|
model = LightPipeline(pipeline_model)
|
|
results = model.fullAnnotate(data)[0]
|
|
|
|
return results['sentiment'][0].result
|
|
|
|
|
|
st.markdown('<div class="main-title">State-of-the-Art Sentiment Detection with Spark NLP</div>', unsafe_allow_html=True)
|
|
|
|
|
|
model_name = st.sidebar.selectbox(
|
|
"Choose the pretrained model",
|
|
["sentimentdl_use_imdb", "sentimentdl_use_twitter"],
|
|
help="For more info about the models visit: https://sparknlp.org/models"
|
|
)
|
|
|
|
|
|
link = """
|
|
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/SENTIMENT_EN.ipynb">
|
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
|
</a>
|
|
"""
|
|
st.sidebar.markdown('Reference notebook:')
|
|
st.sidebar.markdown(link, unsafe_allow_html=True)
|
|
|
|
|
|
folder_path = f"inputs/{model}"
|
|
examples = [
|
|
lines[1].strip()
|
|
for filename in os.listdir(folder_path)
|
|
if filename.endswith('.txt')
|
|
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()]
|
|
if len(lines) >= 2
|
|
]
|
|
|
|
st.subheader("Detect the general sentiment expressed in a movie review or tweet by using our pretrained Spark NLP DL classifier.")
|
|
|
|
selected_text = None
|
|
result_type = 'tweet'
|
|
if 'imdb' in model.lower() or 't5' in model.lower():
|
|
selected_text = st.selectbox("Select a sample IMDB review", examples)
|
|
result_type = 'review'
|
|
else:
|
|
selected_text = st.selectbox("Select a sample Tweet", examples)
|
|
|
|
custom_input = st.text_input("Try it for yourself!")
|
|
|
|
if custom_input:
|
|
selected_text = custom_input
|
|
elif selected_text:
|
|
selected_text = selected_text
|
|
|
|
st.subheader('Selected Text')
|
|
st.write(selected_text)
|
|
|
|
|
|
spark = init_spark()
|
|
pipeline = create_pipeline(model)
|
|
output = fit_data(pipeline, selected_text)
|
|
|
|
|
|
if output in ['pos', 'positive', 'POSITIVE']:
|
|
st.markdown("""<h3>This seems like a <span style="color: green">{}</span> {}. <span style="font-size:35px;">😃</span></h3>""".format('positive', result_type), unsafe_allow_html=True)
|
|
elif output in ['neg', 'negative', 'NEGATIVE']:
|
|
st.markdown("""<h3>This seems like a <span style="color: red">{}</span> {}. <span style="font-size:35px;">😠</span?</h3>""".format('negative', result_type), unsafe_allow_html=True)
|
|
|
|
|
|
|