File size: 5,056 Bytes
0b76f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
import sparknlp
import os
import pandas as pd

from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline

# Page configuration
st.set_page_config(
    layout="wide",  
    initial_sidebar_state="auto"
)

# CSS for styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .section p, .section ul {

            color: #666666;

        }

    </style>

""", unsafe_allow_html=True)

@st.cache_resource
def init_spark():
    return sparknlp.start()

@st.cache_resource
def create_pipeline(model):
    document_assembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

    tokenizer = Tokenizer() \
        .setInputCols(["document"]) \
        .setOutputCol("token")
        
    normalizer = Normalizer() \
        .setInputCols(["token"]) \
        .setOutputCol("normalized")

    stopwords_cleaner = StopWordsCleaner.pretrained("stopwords_sw", "sw") \
            .setInputCols(["normalized"]) \
            .setOutputCol("cleanTokens")\
            .setCaseSensitive(False)

    embeddings = XlmRoBertaEmbeddings.pretrained("xlm_roberta_base_finetuned_swahili", "sw")\
        .setInputCols(["document", "cleanTokens"])\
        .setOutputCol("embeddings")

    embeddingsSentence = SentenceEmbeddings() \
        .setInputCols(["document", "embeddings"]) \
        .setOutputCol("sentence_embeddings") \
        .setPoolingStrategy("AVERAGE")

    sentimentClassifier = ClassifierDLModel.pretrained("classifierdl_xlm_roberta_sentiment", "sw") \
    .setInputCols(["sentence_embeddings"]) \
    .setOutputCol("class_")

    sw_pipeline = Pipeline(
        stages=[
            document_assembler, 
            tokenizer, 
            normalizer, 
            stopwords_cleaner, 
            embeddings, 
            embeddingsSentence, 
            sentimentClassifier
            ])

    return sw_pipeline

def fit_data(pipeline, data):
    empty_df = spark.createDataFrame([['']]).toDF('text')
    pipeline_model = pipeline.fit(empty_df)
    model = LightPipeline(pipeline_model)
    results = model.fullAnnotate(data)[0]

    return results['class_'][0].result

# Set up the page layout
st.markdown('<div class="main-title">State-of-the-Art Swahili Sentiment Detection with Spark NLP</div>', unsafe_allow_html=True)

# Sidebar content
model = st.sidebar.selectbox(
    "Choose the pretrained model",
    ["classifierdl_xlm_roberta_sentiment"],
    help="For more info about the models visit: https://sparknlp.org/models"
)

# Reference notebook link in sidebar
link = """

<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/SENTIMENT_SW.ipynb">

    <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>

</a>

"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)

# Load examples
examples = [
    "Tukio bora katika sinema ilikuwa wakati Gerardo anajaribu kupata wimbo ambao unaendelea kupitia kichwa chake.",
    "Ni dharau kwa akili ya mtu na upotezaji mkubwa wa pesa",
    "Kris Kristoffersen ni mzuri kwenye sinema hii na kweli hufanya tofauti.",
    "Hadithi yenyewe ni ya kutabirika tu na ya uvivu.",
    "Ninapendekeza hizi kwa kuwa zinaonekana nzuri sana, kifahari na nzuri",
    "Safaricom si muache kucheza na mkopo wa nambari yangu tafadhali. mnanifilisisha๐Ÿ˜“๐Ÿ˜“๐Ÿ˜ฏ",
    "Bidhaa ilikuwa bora na inafanya kazi vizuri kuliko ya verizon na bei ilikuwa rahisi ",
    "Siwezi kuona jinsi sinema hii inavyoweza kuwa msukumo kwa mtu yeyote kushinda woga na kukataliwa.",
    "Sinema hii inasawazishwa vizuri na vichekesho na mchezo wa kuigiza na nilijifurahisha sana."
]

st.subheader("This model identifies positive or negative sentiments in Swahili texts.")

selected_text = st.selectbox("Select a sample", examples)
custom_input = st.text_input("Try it for yourself!")

if custom_input:
    selected_text = custom_input
elif selected_text:
    selected_text = selected_text

st.subheader('Selected Text')
st.write(selected_text)

# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)

# Display output sentence
if output.lower() in ['pos', 'positive']:
  st.markdown("""<h3>This seems like a <span style="color: green">{}</span> text. <span style="font-size:35px;">&#128515;</span></h3>""".format('positive'), unsafe_allow_html=True)
elif output.lower() in ['neg', 'negative']:
  st.markdown("""<h3>This seems like a <span style="color: red">{}</span> text. <span style="font-size:35px;">&#128544;</span?</h3>""".format('negative'), unsafe_allow_html=True)