import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")
normalizer = Normalizer() \
.setInputCols(["token"]) \
.setOutputCol("normalized")
stopwords_cleaner = StopWordsCleaner.pretrained("stopwords_sw", "sw") \
.setInputCols(["normalized"]) \
.setOutputCol("cleanTokens")\
.setCaseSensitive(False)
embeddings = XlmRoBertaEmbeddings.pretrained("xlm_roberta_base_finetuned_swahili", "sw")\
.setInputCols(["document", "cleanTokens"])\
.setOutputCol("embeddings")
embeddingsSentence = SentenceEmbeddings() \
.setInputCols(["document", "embeddings"]) \
.setOutputCol("sentence_embeddings") \
.setPoolingStrategy("AVERAGE")
sentimentClassifier = ClassifierDLModel.pretrained("classifierdl_xlm_roberta_sentiment", "sw") \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("class_")
sw_pipeline = Pipeline(
stages=[
document_assembler,
tokenizer,
normalizer,
stopwords_cleaner,
embeddings,
embeddingsSentence,
sentimentClassifier
])
return sw_pipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
results = model.fullAnnotate(data)[0]
return results['class_'][0].result
# Set up the page layout
st.markdown('
State-of-the-Art Swahili Sentiment Detection with Spark NLP
', unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["classifierdl_xlm_roberta_sentiment"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
link = """
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
examples = [
"Tukio bora katika sinema ilikuwa wakati Gerardo anajaribu kupata wimbo ambao unaendelea kupitia kichwa chake.",
"Ni dharau kwa akili ya mtu na upotezaji mkubwa wa pesa",
"Kris Kristoffersen ni mzuri kwenye sinema hii na kweli hufanya tofauti.",
"Hadithi yenyewe ni ya kutabirika tu na ya uvivu.",
"Ninapendekeza hizi kwa kuwa zinaonekana nzuri sana, kifahari na nzuri",
"Safaricom si muache kucheza na mkopo wa nambari yangu tafadhali. mnanifilisisha😓😓😯",
"Bidhaa ilikuwa bora na inafanya kazi vizuri kuliko ya verizon na bei ilikuwa rahisi ",
"Siwezi kuona jinsi sinema hii inavyoweza kuwa msukumo kwa mtu yeyote kushinda woga na kukataliwa.",
"Sinema hii inasawazishwa vizuri na vichekesho na mchezo wa kuigiza na nilijifurahisha sana."
]
st.subheader("This model identifies positive or negative sentiments in Swahili texts.")
selected_text = st.selectbox("Select a sample", examples)
custom_input = st.text_input("Try it for yourself!")
if custom_input:
selected_text = custom_input
elif selected_text:
selected_text = selected_text
st.subheader('Selected Text')
st.write(selected_text)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)
# Display output sentence
if output.lower() in ['pos', 'positive']:
st.markdown("""This seems like a {} text. 😃
""".format('positive'), unsafe_allow_html=True)
elif output.lower() in ['neg', 'negative']:
st.markdown("""This seems like a {} text. 😠""".format('negative'), unsafe_allow_html=True)