import streamlit as st import sparknlp import os import pandas as pd from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline from sparknlp.pretrained import PretrainedPipeline # Page configuration st.set_page_config( layout="wide", initial_sidebar_state="auto" ) # CSS for styling st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource def init_spark(): return sparknlp.start() @st.cache_resource def create_pipeline(model): document = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document")\ .setCleanupMode("shrink") embeddings = UniversalSentenceEncoder.pretrained("tfhub_use_multi", "xx") \ .setInputCols("document") \ .setOutputCol("sentence_embeddings") sentimentClassifier = ClassifierDLModel.pretrained("classifierdl_use_sentiment", "tr") \ .setInputCols(["sentence_embeddings"]) \ .setOutputCol("class") fr_sentiment_pipeline = Pipeline(stages=[document, embeddings, sentimentClassifier]) return fr_sentiment_pipeline def fit_data(pipeline, data): empty_df = spark.createDataFrame([['']]).toDF('text') pipeline_model = pipeline.fit(empty_df) model = LightPipeline(pipeline_model) results = model.fullAnnotate(data)[0] return results['class'][0].result # Set up the page layout st.markdown('
State-of-the-Art Turkish Sentiment Detection with Spark NLP
', unsafe_allow_html=True) # Sidebar content model = st.sidebar.selectbox( "Choose the pretrained model", ["classifierdl_use_sentiment"], help="For more info about the models visit: https://sparknlp.org/models" ) # Reference notebook link in sidebar link = """ Open In Colab """ st.sidebar.markdown('Reference notebook:') st.sidebar.markdown(link, unsafe_allow_html=True) # Load examples examples = [ "Bu sıralar kafam çok karışık.", "Sınavımı geçtiğimi öğrenince derin bir nefes aldım.", "Hizmet kalite çok güzel teşekkürler", "Meydana gelen kazada 1 kisi hayatini kaybetti.", "Ocak ayinda deprem bekleniyor", "Gun batimi izlemeyi cok severim." ] st.subheader("This model identifies positive or negative sentiments in Turkish texts") selected_text = st.selectbox("Select a sample", examples) custom_input = st.text_input("Try it for yourself!") if custom_input: selected_text = custom_input elif selected_text: selected_text = selected_text st.subheader('Selected Text') st.write(selected_text) # Initialize Spark and create pipeline spark = init_spark() pipeline = create_pipeline(model) output = fit_data(pipeline, selected_text) # Display output sentence if output.lower() in ['pos', 'positive']: st.markdown("""

This seems like a {} text. 😃

""".format('positive'), unsafe_allow_html=True) elif output.lower() in ['neg', 'negative']: st.markdown("""

This seems like a {} text. 😠""".format('negative'), unsafe_allow_html=True)